首页> 外文期刊>Journal of Manufacturing Processes >Numerical study of smoothed particle hydrodynamics method in orthogonal cutting simulations - Effects of damage criteria and particle density
【24h】

Numerical study of smoothed particle hydrodynamics method in orthogonal cutting simulations - Effects of damage criteria and particle density

机译:光滑颗粒流体动力学方法在正交切削模拟中的数值研究-损伤准则和颗粒密度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This paper conducts a numerical study of smoothed particle hydrodynamics (SPH), a mesh-free method, for orthogonal cutting simulations of both ductile and brittle materials. Finite element method (FEM) is commonly used for cutting simulations, but issues with excessive element deformation hinder its applications. SPH can be an alternative option because of the particle-based algorithm eliminating the use of volumetric elements. However, studies have reported inconsistent ways to set up damage definition and particle density. This paper instructs a method to build an SPH model and compares the results with an equivalent FEM, in terms of the effects of damage definition and particle density on chip morphology and cutting forces. The materials used for this study are aluminum, which represents a common ductile engineering material, and the cortical bone representing a brittle counterpart. The results reveal that in spite of the natural separation of SPH, proper damage criteria must be defined for the model accuracy. SPH tends to produce a lower cutting force than that of FEM. SPH and FEM have an opposite convergence trend as the particle density and mesh size reduce. SPH better simulates fragmented debris in brittle cuttings but fails to produce curled chips in ductile cuttings. (C) 2017 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.
机译:本文对光滑颗粒流体动力学(SPH)(一种无网格方法)进行了数值研究,以对延性和脆性材料进行正交切削仿真。有限元方法(FEM)通常用于切削模拟,但是元素变形过大的问题阻碍了其应用。由于基于粒子的算法消除了对体积元素的使用,因此SPH可以作为替代选择。但是,研究报告了建立损伤定义和颗粒密度的不一致方法。本文介绍了一种建立SPH模型的方法,并根据损伤定义和颗粒密度对切屑形态和切削力的影响,将结果与等效FEM进行了比较。用于这项研究的材料是铝,代表一种常见的延性工程材料,而皮质骨则代表一种脆性对应物。结果表明,尽管SPH自然分离,但仍必须为模型准确性定义适当的破坏标准。 SPH倾向于产生比FEM更低的切削力。随着颗粒密度和筛孔尺寸的减小,SPH和FEM具有相反的收敛趋势。 SPH可以更好地模拟脆性碎屑中破碎的碎屑,但无法在韧性碎屑中产生卷曲的碎屑。 (C)2017年制造工程师学会。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号