首页> 外文期刊>Journal of Lightwave Technology >On-Chip Digital Fourier-Transform Spectrometer Using a Thermo-Optical Michelson Grating Interferometer
【24h】

On-Chip Digital Fourier-Transform Spectrometer Using a Thermo-Optical Michelson Grating Interferometer

机译:使用热光学迈克尔逊光栅干涉仪的片上数字傅里叶变换光谱仪

获取原文
获取原文并翻译 | 示例
       

摘要

This theoretical modeling and simulation paper presents designs and projected performance of an on-chip digital Fourier transform spectrometer using a thermo-optical (TO) Michelson grating interferometer operating at ~1550 and 2000 nm for silicon-on-insulator and for germanium-on-silicon technological platforms, respectively. The Michelson interferometer arms consist of two unbalanced tunable optical delay lines operating in the reflection mode. They are comprised of a cascade connection of waveguide Bragg grating resonators (WBGRs) separated by a piece of straight waveguide with lengths designed according to the spectrometer resolution requirements. The length of each WBGR is chosen according to the Butterworth filter technique to provide one resonant spectral profile with a bandwidth twice that of the spectrometer bandwidth. A selectable optical path difference (OPD) between the arms is obtained by shifting the notch in the reflectivity spectrum along the wavelength axis by means of a low-power TO heater stripe atop the WBGR, inducing an OPD that depends on the line position of the WBGR affected by TO switching. We examined the device performances in terms of signal recostruction in the radio-frequency (RF) spectrum analysis application at 1 GHz and at 1.5 GHz of spectrometer resolution. The investigation demonstrated that high-quality spectrum reconstruction is obtained for both Lorentzian and arbitrary input signals with a bandwidth up to 40 GHz. We also show that spectrum reconstruction of 100-200 GHz RF band input signals is feasible in the Ge-on-Si chips.
机译:这份理论建模和仿真论文介绍了使用热光学(TO)迈克尔逊光栅干涉仪的片上数字傅里叶变换光谱仪的设计和预期性能,该干涉仪工作于大约1550和2000 nm,用于绝缘体上硅和锗上硅技术平台。迈克尔逊干涉仪臂由两条不平衡的可调光学延迟线组成,它们以反射模式工作。它们由波格布拉格光栅谐振器(WBGR)的级联连接组成,这些波格布拉格谐振器由一段直波导管隔开,其长度根据光谱仪的分辨率要求而设计。根据Butterworth滤波器技术选择每个WBGR的长度,以提供一个谐振频谱轮廓,其带宽是光谱仪带宽的两倍。臂之间的可选光程差(OPD)是通过利用WBGR顶部的低功率TO加热器条沿波长轴移动反射率光谱中的凹口来获得的,从而产生取决于OPE线位置的OPD WBGR受TO切换的影响。我们在1 GHz和1.5 GHz光谱仪分辨率的射频(RF)频谱分析应用中,根据信号重构来检查设备性能。调查表明,对于带宽高达40 GHz的洛伦兹信号和任意输入信号,都可以获得高质量的频谱重构。我们还表明,在Ge-on-Si芯片中100-200 GHz RF波段输入信号的频谱重构是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号