...
首页> 外文期刊>Journal of Intelligent & Robotic Systems >A Biologically-Inspired Micro Aerial Vehicle Sensing, Modeling and Control Strategies
【24h】

A Biologically-Inspired Micro Aerial Vehicle Sensing, Modeling and Control Strategies

机译:受生物启发的微型飞行器传感,建模和控制策略

获取原文
获取原文并翻译 | 示例
           

摘要

This paper introduces a novel framework for the design, modeling and control of a Micro Aerial Vehicle (MAV). The vehicle’s conceptual design is based on biologically-inspired principles and emulates a dragonfly (Odonata–Anisoptera). We have taken inspiration from the flight mechanism features of the dragonfly and have developed indigenous designs in creating a novel version of a Flapping Wing MAV (FWMAV). The MAV design incorporates a complex mechanical construction and a sophisticated multi-layered, hybrid, linearon-linear controller to achieve extended flight times and improved agility compared to other rotary wing and FWMAV Vertical Take Off and Landing (VTOL) designs. The first MAV prototype will have a ballpark weight including sensor payload of around 30 g. The targeted lifting capability is about twice the weight. The MAV features state of the art sensing and instrumentation payload, which includes integrated high-power on-board processors, 6DoF inertial sensors, 3DoF compasses, GPS, embedded camera and long-range telemetry capability. A 3-layer control mechanism has been developed to harness the dynamics and attain complete navigational control of the MAV. The inner-layer is composed of a ‘quad hybrid-energy controller’ and two higher layers are at present, implementing a linear controller; the latter will be replaced eventually with a dynamic adaptive non-linear controller. The advantages of the proposed design compared to other similar ones include higher energy efficiency and extended flight endurance. The design features elastic storage and re-use of propulsion energy favoring energy conservation during flight. The design/modeling of the MAV and its kinematics & dynamics have been tested under simulation to achieve desired performance. The potential applications for such a high endurance vehicle are numerous, including air-deployable mass surveillance and reconnaissance in cluster and swarm formations. The efficacy of the design is demonstrated through a simulation environment. The dynamics are verified through simulations and a general linear controller coupled with an energy based non-linear controller is shown to operate the vehicle in a stable regime. In accordance with specified objectives a prototype is being developed for flight-testing and demonstration purposes.
机译:本文介绍了一种用于微型飞机(MAV)的设计,建模和控制的新颖框架。该车的概念设计基于生物学启发的原理,并模仿蜻蜓(Odonata–Anisoptera)。我们从蜻蜓的飞行机制特征中汲取了灵感,并开发了本地设计,以制作新颖的拍打翼MAV(FWMAV)。与其他旋翼和FWMAV垂直起降(VTOL)设计相比,MAV设计采用了复杂的机械结构和复杂的多层混合线性/非线性控制器,以延长飞行时间并提高敏捷性。第一台MAV原型将具有大约30 g的传感器有效载荷,重量很轻。目标提升能力约为重量的两倍。 MAV具有最先进的传感和仪表有效载荷,其中包括集成的大功率车载处理器,6DoF惯性传感器,3DoF指南针,GPS,嵌入式相机和远程遥测功能。已经开发出一种三层控制机制来利用动力学并获得MAV的完整导航控制。内层由“四元混合能量控制器”组成,目前有两个更高的层,实现了线性控制器。后者将最终被动态自适应非线性控制器取代。与其他类似设计相比,拟议设计的优势包括更高的能源效率和更长的飞行寿命。该设计具有弹性存储和可重复使用推进能量的特点,有利于飞行过程中的节能。 MAV的设计/建模及其运动学和动力学已在仿真下进行了测试,以实现所需的性能。这种高耐久性车辆的潜在应用是众多的,包括可空中部署的大规模监视和侦察机群和群队侦察。通过仿真环境证明了设计的有效性。通过仿真验证了动力学,并显示了与基于能量的非线性控制器耦合的通用线性控制器可以使车辆在稳定的状态下运行。根据指定的目标,正在开发用于飞行测试和演示目的的原型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号