首页> 外文期刊>Journal of informetrics >Functional analysis of generalized linear models under non-linear constraints with applications to identifying highly-cited papers
【24h】

Functional analysis of generalized linear models under non-linear constraints with applications to identifying highly-cited papers

机译:应用识别高度引用的论文的非线性约束下广义线性模型的功能分析

获取原文
获取原文并翻译 | 示例
       

摘要

This article introduces a versatile functional form for Generalized Linear Models (GLMs) through a simple, yet effective, transformation of the current framework. The models are applied through a new hierarchical bayesian estimation procedure for logistic regression to highly-cited papers in the Management Information Systems (MIS) field. The results are uniformly better, in regards to model fit and inference for in-sample and out-of-sample data, for simulation studies and real-world data applications, requiring very little time to convergence to true population parameters. In simulation studies, I show that the method contains the true parameters nearly three times as often as widely used existing GLMs, and does so while having confidence intervals that are 54.50% smaller, while requiring around two-thirds the number of MCMC iterations as existing bayesian methods. In Scientometric applications the methodology is shown to be highly robust with predictive/classification accuracy, either equaling or exceeding existing methods for identifying highly-cited articles including Artificial Neural Networks (ANN). Thus, the method is shown to be robust to the amount of asymmetry (or symmetry) of the probability of success (or failure) and robust to unbalanced samples and varying Data Generating Processes. Further, the methodology is equivalent to current methods if the data support them and is therefore complementary to existing methods, without loss of interpretability of model parameters. For the MIS field it finds that Popularity Parameter (PP) of an article Keywords can predict whether a paper will be highly-cited (top 25% of highly-cited articles) between two to three years after publication and beyond. Furthermore, given the small number of iterations needed for convergence, the methodology can also be used as a baseline method in Big Data (BD) settings for both Artificial Intelligence (AI) and Machine Learning (ML) contexts as well.(c) 2020 Elsevier Ltd. All rights reserved.
机译:本文通过简单但有效地转换目前框架的简单,且有效地介绍了一种通用的线性模型(GLM)的多功能功能形式。该模型是通过新的分层贝叶斯估算程序应用,用于对管理信息系统(MIS)领域的高度引用的论文进行逻辑回归。结果更好地均匀,对于模型适合和对样品内和样品相关数据的推断,用于模拟研究和现实世界数据应用,需要很少收敛到真正的人口参数。在仿真研究中,我表明该方法包含近三倍的真正参数,往往是广泛使用的现有GLMS,并且在具有比较小的置信区间的置信区间,同时需要大约三分之二的MCMC迭代的数量贝叶斯方法。在科学应用中,该方法显示出具有预测/分类精度的高度稳定,可以等于或超过用于识别包括人工神经网络(ANN)的高度引用物品的现有方法。因此,该方法被示出为成功(或失败)的概率(或失败)的不对称性(或对称性)的量和鲁棒到不平衡样本和变化的数据生成过程的稳健。此外,如果数据支持它们并且因此与现有方法互补,则该方法等同于当前方法,而不会损失模型参数的可解释性。对于MIS领域,它发现文章关键词的受欢迎程度参数(PP)可以预测出版后两到三年之间的高度引用(高度引用的文章的前25%)。此外,鉴于收敛所需的少量迭代,该方法也可以用作人工智能(AI)和机器学习(ML)上下文的大数据(BD)设置中的基线方法。(c)2020 elessvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号