首页> 外文期刊>Journal of Heat Transfer >Latent Heat Fluxes Through Soft Materials With Microtruss Architectures
【24h】

Latent Heat Fluxes Through Soft Materials With Microtruss Architectures

机译:具有微桁架结构的软材料潜热通量

获取原文
获取原文并翻译 | 示例
       

摘要

Microscale truss architectures provide high mechanical strength, light weight, and open porosity in polymer sheets. Liquid evaporation and transport of the resulting vapor through truss voids cool nearby surfaces. Thus, microtruss materials can simultaneously prevent mechanical and thermal damage. Assessment of promise requires quantitative understanding of vapor transport through microtruss pores for realistic heat loads and latent heat carriers. Pore size may complicate exegesis owing to vapor rarefaction or surface interactions. This paper quantifies the nonboiling evaporative cooling of a flat surface by water vapor transport through two different hydrophobic polymer membranes, 112-119 μm (or 113-123 μm) thick, with microtruss-like architectures, I.e., straight-through pores of average diameter of 1.0-1.4 μm (or 12.6-14.2 μm) and average overall porosity of 7.6% (or 9.9%). The surface, heated at 1350 ± 20 W_t/m~2 to mimic human thermal load in a desert (daytime solar plus metabolic), was the bottom of a 3.1 cm inside diameter, 24.9 cm~3 cylindrical aluminum chamber capped by the membrane. Steady-state rates of water vapor transport through the membrane pores to ambient were measured by continuously weighing the evaporation chamber. The water vapor concentration at the membrane exit was maintained near zero by a cross flow of dry nitrogen (velocity=2.8 m/s). Each truss material enabled 13-14℃ evaporative cooling of the surface, roughly 40% of the maximum evaporative cooling attainable, I.e., with an uncapped chamber. Intrinsic pore diffusion coefficients for dilute water vapor (<10.4 mole %) in air (P total ~112,000 Pa) were deduced from the measured vapor fluxes by mathematically disaggregating the substantial mass transfer resistances of the boundary layers (~50%) and correcting for radial variations in upstream water vapor concentration. The diffusion coefficients for the 1.0-1.4 μm pores (Knudsen number ~0.1) agree with literature for the water vapor-air mutual diffusion coefficient to within ±20%, but for the nominally 12.6-14.2 μm pores (Kn ~0.01), the diffusion coefficient values were smaller, possibly because considerable pore area resides in noncircular, I.e., narrow, wedge-shaped cross sections that impede diffusion owing to enhanced rarefaction. The present data, parameters, and mathematical models support the design and analysis of microtruss materials for thermal or simultaneous thermal-and-mechanical protection of microelectromechanical systems, nanoscale components, humans, and other macrosystems.
机译:微型桁架结构可在聚合物片材中提供较高的机械强度,重量轻和开孔率。液体的蒸发和所产生的蒸气通过桁架空隙的传输使附近的表面冷却。因此,微桁架材料可以同时防止机械和热损伤。评估前途需要对通过微桁架孔的蒸汽传输进行定量的了解,以获取实际的热负荷和潜热载体。由于蒸气稀少或表面相互作用,孔径可能会使解释复杂化。本文通过水蒸气通过两个不同的疏水性聚合物膜(厚度为112-119μm(或113-123μm),具有微桁架状结构,即平均直径的直通孔)来量化平坦表面的非沸腾蒸发冷却1.0-1.4微米(或12.6-14.2微米)和平均总孔隙率7.6%(或9.9%)。该表面以1350±20 W_t / m〜2的温度加热,以模仿沙漠中的人类热负荷(白天的太阳能加上新陈代谢),其表面为内径为3.1 cm,24.9 cm〜3的圆柱形铝制腔室的底部,并被膜覆盖。通过连续称重蒸发室来测量水蒸气通过膜孔传输到周围环境的稳态速率。膜出口处的水蒸气浓度通过干燥氮气的交叉流(速度= 2.8 m / s)保持接近零。每种桁架材料都可以对表面进行13-14℃的蒸发冷却,大约是无盖腔室时可达到的最大蒸发冷却量的40%。通过数学分解边界层的实质传质阻力(〜50%)并校正,从空气中的稀水蒸气(<10.4摩尔%)(P总〜112,000 Pa)的本征孔扩散系数推导得出。上游水蒸气浓度的径向变化。 1.0-1.4μm的孔(Knudsen数〜0.1)的扩散系数与文献一致,水蒸气-空气的相互扩散系数在±20%以内,而名义上的12.6-14.2μm的孔(Kn〜0.01)的扩散系数与文献一致。扩散系数值较小,可能是因为大量孔隙位于非圆形,即狭窄的楔形横截面中,这些横截面由于稀疏性增强而阻碍了扩散。当前的数据,参数和数学模型支持微桁架材料的设计和分析,以对微机电系统,纳米级部件,人类和其他宏观系统进行热保护或同时进行热机械保护。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号