首页> 外文期刊>Journal of Heat Transfer >Extending Fluorescence Thermometry to Measuring Wall Surface Temperatures Using Evanescent-Wave Illumination
【24h】

Extending Fluorescence Thermometry to Measuring Wall Surface Temperatures Using Evanescent-Wave Illumination

机译:使用E逝波照明将荧光测温法扩展到测量墙体表面温度

获取原文
获取原文并翻译 | 示例
       

摘要

Cooling microelectronics with heat flux values of hundreds ofkWIcm2 over hot spots with typical dimensions well below 1 mm will require new single- and two-phase thermal management technologies with micron-scale addressability. However, experimental studies of thermal transport through micro- and mini-channels report a wide range ofNusselt numbers even in laminar single-phase flows, presumably due in part to variations in channel geometry and surface roughness. These variations make constructing accurate numerical models for what would be otherwise straightforward computational simulations challenging. There is, therefore, a need for experimental techniques that can measure both bulk fluid and wall surface temperatures at micron-scale spatial resolution without disturbing the flow in both heat transfer and microfluidics applications. We report here the evaluation of a nonintrusive technique, fluorescence thermometry (FT), to determine wall surface and bulk fluid temperatures with a spatial resolution of O(10 ^m) for water flowing through a heated channel. Fluorescence thermometry is typically used to estimate water temperature fields based on variations in the emission intensity of a fluorophore dissolved, in the water. The accuracy of FT can be improved by taking the ratio of the emission signals from two different fluorophores (dual-tracer FT or DFT) to eliminate variations in the signal due to (spatial and temporal) variations in the excitation intensity. In this work, two temperature-sensitive fluorophores, fluorescein and sulforhodamine B, with emission intensities that increase and decrease, respectively, with increasing temperature, are used to further improve the accuracy of the temperature measurements. Water temperature profiles were measured in steady Poiseuille flow at Reynolds numbers of 3.3 and 8.3 through a 1 mm heated minichannel. Water temperatures in the bulk flow (i.e., away from the walls) were measured using DFT with an average uncertainty of 0.2 ℃ at a spatial resolution of 30 fim. Temperatures within the first 0.3 jxm next to the wall were measured using evanescent-wave illumination of a single temperature-sensitive fluorophore with an average uncertainty of less than 0.2 ℃ at a spatial resolution of 10 fim. The results are compared with numerical predictions, which suggest that the water temperatures at an average distance of ~70 nm from the wall are identical within experimental uncertainty to the wall surface temperature.
机译:在典型尺寸远低于1 mm的热点上冷却具有数百kWIcm2的热通量值的微电子器件,将需要具有微米级可寻址性的新型单相和两相热管理技术。但是,通过微通道和微通道进行热传输的实验研究报告,即使在层流单相流中,Nusselt值的范围也很广,这可能部分是由于通道几何形状和表面粗糙度的变化所致。这些变化使构建准确的数值模型变得困难,否则将很难进行简单的计算模拟。因此,需要能够在微米尺度的空间分辨率下测量体积大的流体和壁表面温度而又不干扰传热和微流体应用中的流动的实验技术。我们在此报告对非侵入式技术的评估,即荧光测温(FT),以确定流经加热通道的水的壁面和整体流体温度,其空间分辨率为O(10 ^ m)。荧光测温法通常用于基于溶解在水中的荧光团的发射强度的变化来估计水温场。 FT的精度可以通过获取来自两个不同荧光团(双示踪FT或DFT)的发射信号之比来消除由于激发强度(时空)变化而引起的信号变化来提高。在这项工作中,使用两种对温度敏感的荧光团:荧光素和磺基若丹明B,它们的发射强度分别随温度的升高而增加和降低,以进一步提高温度测量的准确性。水温曲线是通过1毫米加热的微型通道,以稳定的Poiseuille流量测量的,雷诺数分别为3.3和8.3。使用DFT在30 fim的空间分辨率下使用平均不确定度为0.2℃的DFT测量了大流量(即远离墙壁)中的水温。使用单个温度敏感荧光团的e逝波照射,在10 fim的空间分辨率下,平均不确定度小于0.2℃,测量了紧挨壁的第一个0.3 jxm内的温度。将结果与数值预测结果进行比较,数值预测结果表明,距壁平均距离约70 nm的水温在实验不确定性范围内与壁表面温度相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号