首页> 外文学位 >Microscale optical thermometry techniques for measuring liqud-phase and wall surface temperatures.
【24h】

Microscale optical thermometry techniques for measuring liqud-phase and wall surface temperatures.

机译:用于测量液相和壁表面温度的微型光学测温技术。

获取原文
获取原文并翻译 | 示例

摘要

Thermal management challenges for microelectronics are a major issue for future integrated circuits, thanks to the continued exponential growth in component density described by Moore’s Law. Current projections from the International Technology Roadmap for Semiconductors predict that local heat fluxes will exceed 1 kW/cm2 within a decade. There is thus an urgent need to develop new compact, high heat flux forcedliquid and evaporative cooling technologies.;Thermometry techniques that can measure temperature fields with micron-scale resolution without disturbing the flow of coolant would be valuable in developing and evaluating new thermal management technologies. Specifically, the ability to estimate local convective heat transfer coefficients, which are proportional to the difference between the bulk coolant and wall surface temperatures, would be useful in developing computationally efficient reduced-order models of thermal transport in microscale heat exchangers.;The objective of this doctoral thesis is therefore to develop and evaluate non-intrusive optical thermometry techniques to measure wall surface and bulk liquid temperatures with O(1–10 µm) spatial resolution. Intensity-based fluorescence thermometry (FT), where the temperature distribution of an aqueous fluorescent dye solution is estimated from variations in the fluorescent emission intensity, was used to measure temperatures in steady Poiseuille flow at Reynolds numbers less than 10. The flow was driven through 1 mm square channels heated on one side to create temperature gradients exceeding 8 °C/mm along both dimensions of the channel cross-section. In the evanescent-wave fluorescence thermometry (EFT) experiments, a solution of fluorescein was illuminated by evanescent waves to estimate the solution temperature within about 300 nm of the wall. In the dual-tracer FT (DFT) studies, a solution of two fluorophores with opposite temperature sensitivities was volumetrically illuminated over most of the `cross-section of the channel to determine solution temperatures in the bulk flow. The accuracy of both types of FT is determined by comparing the temperature data with numerical predictions obtained with commercial computational fluid dynamics software. The results indicate that EFT can measure wall surface temperatures with an average accuracy of about 0.3 °C at a spatial resolution of 10 µm, and that DFT can measure bulk water temperature fields with an average accuracy of about 0.3 °C at a spatial resolution of 50 µµm in the image plane. The results also suggest that the spatial resolution of the DFT data along the optical axis (i.e., normal to the image plane) is at least an order of magnitude greater than the depth of focus of the imaging system.
机译:由于摩尔定律所描述的组件密度持续呈指数增长,微电子的热管理挑战是未来集成电路的主要问题。国际半导体技术路线图的当前预测表明,十年内局部热通量将超过1 kW / cm2。因此,迫切需要开发新的紧凑,高热通量的强制液体和蒸发冷却技术。可以在不影响冷却液流量的情况下以微米级分辨率测量温度场的测温技术在开发和评估新的热管理技术方面将是有价值的。具体而言,估算局部对流传热系数的能力与局部冷却剂和壁表面温度之间的差异成正比,这将有助于开发计算有效的降阶微尺度换热器传热模型。因此,本博士论文旨在开发和评估非介入式光学测温技术,以O(1–10 µm)空间分辨率测量壁表面和大块液体温度。基于强度的荧光测温法(FT)用于测量荧光染料水溶液的温度分布,该温度分布是根据荧光发射强度的变化估算的,用于测量雷诺数小于10的稳定Poiseuille流中的温度。一侧加热的1 mm方形通道在通道横截面的两个尺寸上都会产生超过8°C / mm的温度梯度。在van逝波荧光测温(EFT)实验中,by逝光照射了荧光素溶液,以估计溶液温度在距壁约300 nm的范围内。在双示踪傅立叶变换(DFT)研究中,在通道的大部分“横截面”中,对两种具有相反温度敏感性的荧光团的溶液进行了体积照明,以确定整体流动中的溶液温度。通过将温度数据与使用商业计算流体动力学软件获得的数值预测进行比较,可以确定两种类型的FT的精度。结果表明,EFT可以在10 µm的空间分辨率下以约0.3°C的平均精度测量壁面温度,而DFT可以以0.25的空间分辨率以约0.3°C的平均精度测量散装水温度场。图像平面中为50 µm。结果还表明,沿光轴(即垂直于像平面)的DFT数据的空间分辨率至少比成像系统的聚焦深度大一个数量级。

著录项

  • 作者

    Kim, Myeongsub.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Applied Mechanics.;Nanotechnology.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号