首页> 外文期刊>Journal of Heat Transfer >Temperature Rise in Electroosmotic Flow of Typical Non-Newtonian Biofluids Through Rectangular MicroChannel
【24h】

Temperature Rise in Electroosmotic Flow of Typical Non-Newtonian Biofluids Through Rectangular MicroChannel

机译:典型的非牛顿生物流体通过矩形微通道的电渗流的温升

获取原文
获取原文并翻译 | 示例
       

摘要

Electroosmosis is the main mechanism for flow generation in lab-on-a-chip (LOC) devices. The temperature rise due to the Joule heating phenomenon, associated with the electroosmosis, may be detrimental for samples being considered in LOCs. Hence, a complete understanding of the heat transfer physics associated with the electroosmotic flow is of high importance in design and active control of LOCs. The objective of the present study is to estimate the temperature rise and the thermal entry length in electroosmotic flow through rectangular microchannels, having potential applications in LOC devices. Along this line, the power-law rheological model is used to account for non-Newtonian behavior of the common biofluids encountered in these devices. A mixed type of thermal boundary condition is employed at the channel surface, instead of routinely presumed constant wall heat flux or constant wall temperature conditions. A finite difference-based numerical method is employed for solving the governing equations in dimensionless form. An approximate solution, based on the premise of a uniform temperature field throughout the channel cross section, is also obtained for the bulk mean temperature, which is found to be of high accuracy. This, accompanied by the assessments of the temperature profile, reveals that the temperature variations in the channel cross section are negligible, and as a result, the bulk mean temperature can be used as a very precise estimate of the maximum temperature in an LOC device. Moreover, the evaluation of the entry length shows that a thermally fully developed flow is hardly achieved in practical applications because of small length scales involved. Accordingly, the maximum temperature rise may significantly be smaller than what is calculated based on a thermally fully developed flow assumption
机译:电渗是芯片实验室(LOC)设备中产生流量的主要机制。与电渗相关的因焦耳热现象而引起的温度升高可能对LOC中考虑的样品有害。因此,对于LOC的设计和主动控制,全面理解与电渗流相关的传热物理学至关重要。本研究的目的是估计通过矩形微通道的电渗流中的温度升高和热入口长度,在LOC器件中具有潜在的应用。沿着这条线,幂律流变模型用于说明这些设备中遇到的常见生物流体的非牛顿行为。在通道表面采用混合类型的热边界条件,而不是常规假定的恒定壁热通量或恒定壁温条件。基于有限差分的数值方法用于求解无量纲形式的控制方程。基于整个通道横截面的均匀温度场的前提,还获得了总体平均温度的近似解决方案,发现该总体平均温度具有高精度。伴随温度曲线的评估,这表明通道横截面中的温度变化可以忽略不计,因此,体均温度可以用作LOC设备中最高温度的非常精确的估计。此外,对入口长度的评估表明,由于涉及较小的长度尺度,因此在实际应用中几乎无法实现热充分发展的流动。因此,最大温升可能大大小于根据热充分展开的流量假设计算得出的值

著录项

  • 来源
    《Journal of Heat Transfer》 |2014年第3期|031702.1-031702.11|共11页
  • 作者单位

    Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, P.O. Box 11155-9567, Tehran, Iran;

    Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, P.O. Box 11155-9567, Tehran, Iran;

    Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, P.O. Box 11155-9567, Tehran, Iran;

    Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electroosmotic flow; Joule heating; microchannel; power-law fluids; lab-on-a-chip;

    机译:电渗流焦耳加热;微通道幂律流体;芯片实验室;
  • 入库时间 2022-08-18 00:23:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号