首页> 外文期刊>Journal of Heat Transfer >Pore Scale Investigation of Heat Conduction of High Porosity Open-Cell Metal Foam/Paraffin Composite
【24h】

Pore Scale Investigation of Heat Conduction of High Porosity Open-Cell Metal Foam/Paraffin Composite

机译:高孔隙度开孔金属泡沫/石蜡复合材料导热的孔尺度研究

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, a numerical model employing an approximately realistic three-dimensional (3D) foam structure represented by Weaire-Phelan foam cell is developed to study the steady-state heat conduction of high porosity open-cell metal foam/paraffin composite at the pore-scale level. The conduction problem is considered in a cubic representative computation unit of the composite material with a constant temperature difference between one opposite sides of the cubic unit (the other outer surfaces of the cubic unit are thermally insulated). The effective thermal conductivities (ETCs) of metal foam/paraffin composites are calculated with the developed pore-scale model considering small-scale details of heat conduction, which avoids using adjustable free parameters that are usually adopted in the previous analytical models. Then, the reason why the foam pore size has no evident effect on ETC as reported in the previous macroscopic experimental studies is explored at pore scale. Finally, the effect of air cavities existing within solid paraffin in foam pore region on conduction capacity of metal foam/paraffin composite is investigated. It is found that our ETC data agree well with the reported experimental results, and thus by direct numerical simulation (DNS), the ETC data of different metal foam/paraffin composites are provided for engineering applications. The essential reason why pore size has no evident effect on ETC is due to the negligible interstitial heat transfer between metal foam and paraffin under the present thermal boundary conditions usually used to determine the ETC. It also shows that overlarge volume fraction of air cavity significantly weakens the conduction capacity of paraffin, which however can be overcome by the adoption of high conductive metal foam due to enhancement of conduction.
机译:在本文中,建立了一个以Weaire-Phelan泡沫池为代表的近似逼真的三维(3D)泡沫结构的数值模型,以研究孔中高孔隙率开孔金属泡沫/石蜡复合材料的稳态热传导规模水平。在复合材料的立方代表计算单元中考虑了传导问题,在立方单元的相对两侧之间具有恒定的温度差(立方单元的其他外表面已隔热)。金属泡沫/石蜡复合材料的有效导热系数(ETC)是使用已开发的孔隙尺度模型计算的,其中考虑了导热的小尺度细节,避免了使用先前分析模型中通常采用的可调整自由参数。然后,从以前的宏观实验研究中报道了为什么泡沫孔径对ETC没有明显影响的原因。最后,研究了泡沫孔区域中固体石蜡中存在的气孔对金属泡沫/石蜡复合材料的传导能力的影响。发现我们的ETC数据与报道的实验结果非常吻合,因此通过直接数值模拟(DNS),可以将不同金属泡沫/石蜡复合材料的ETC数据提供给工程应用。孔径对ETC没有明显影响的根本原因是由于在通常用于确定ETC的当前热边界条件下,金属泡沫和石蜡之间的间隙热传递可忽略不计。这也表明,气腔的体积分数过大会显着削弱石蜡的传导能力,但是由于传导性的增强,可以通过采用高传导性金属泡沫来克服。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号