首页> 外文期刊>Journal of Heat Transfer >Optimal Arrangement Design of a Tube Bundle in Cross-Flow Using Computational Fluid Dynamics and Multi-Objective Genetic Algorithm
【24h】

Optimal Arrangement Design of a Tube Bundle in Cross-Flow Using Computational Fluid Dynamics and Multi-Objective Genetic Algorithm

机译:计算流体动力学和多目标遗传算法的跨流管束的最佳布置设计

获取原文
获取原文并翻译 | 示例
       

摘要

Recently, energy saving problem attracts increasing attention from researchers. This study aims to determine the optimal arrangement of a tube bundle to achieve the best overall performance. The multi-objective genetic algorithm (MOGA) is employed to determine the best configuration, where two objective functions, the average heat flux q and the pressure drop Delta p, are selected to evaluate the performance and the consumption, respectively. Subsequently, a decision maker method, technique for order preference by similarity to an ideal solution (TOPSIS), is applied to determine the best compromise solution from noninferior solutions (Pareto solutions). In the optimization procedure, all the two-dimensional (2D) symmetric models are solved by the computational fluid dynamics (CFD) method. Results show that performances alter significantly as geometries of the tube bundle changes along the Pareto front. For the case 1 (using staggered arrangement as initial), the optimal q varies from 2708.27 W/m(2) to 3641.25 W/m(2) and the optimal Dp varies from 380.32 Pa to 1117.74 Pa, respectively. For the case 2 (using in-line arrangement as initial), the optimal q varies from 2047.56 W/m(2) to 3217.22 W/m(2) and the optimal Dp varies from 181.13 Pa to 674.21 Pa, respectively. Meanwhile, the comparison between the optimal solution with maximum q and the one selected by TOPSIS indicates that TOPSIS could reduce the pressure drop of the tube bundle without sacrificing too much heat transfer performance.
机译:最近,节能问题吸引了越来越多的研究人员的关注。本研究旨在确定管束的最佳布置,以实现最佳整体性能。采用多目标遗传算法(MOGA)来确定最佳配置,其中选择两个目标函数,平均热通量Q和压降ΔP分别评估性能和消耗。随后,应用决策者方法,通过与理想解决方案(TOPSIS)相似的顺序偏好的技术,用于确定非溶液(Pareto溶液)的最佳折衷溶液。在优化过程中,通过计算流体动力学(CFD)方法解决了所有二维(2D)对称模型。结果表明,随着管束的几何形状沿着帕累托前线变化,表演显着改变。对于壳体1(使用交错布置为初始),最佳Q从2708.27 w / m(2)变化到3641.25 w / m(2),并且最佳dp分别从380.32 pa变化到1117.74 pa。对于壳体2(使用in-Line布置为初始),最佳Q从2047.56 W / m(2)变化到3217.22 w / m(2),并且最佳DP分别从181.13 pa到674.21 pa变化。同时,最大Q和Topsis选择的最佳溶液之间的比较表明,Topsis可以减少管束的压降而不会牺牲过多的传热性能。

著录项

  • 来源
    《Journal of Heat Transfer》 |2019年第7期|071801.1-071801.9|共9页
  • 作者单位

    Huazhong Univ Sci & Technol Sch Energy & Power Engn Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci & Technol Sch Energy & Power Engn Wuhan 430074 Hubei Peoples R China;

    China Acad Launch Vehicle Beijing 100076 Peoples R China;

    Huazhong Univ Sci & Technol Sch Energy & Power Engn Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci & Technol Sch Energy & Power Engn Wuhan 430074 Hubei Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    heat transfer enhancement; multi-objective optimization; configuration design; tube bundle; best compromise solution;

    机译:传热增强;多目标优化;配置设计;管捆绑;最佳妥协解决方案;
  • 入库时间 2022-08-18 21:17:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号