首页> 外文期刊>Journal of Guidance, Control, and Dynamics >Determination of Circular and Spherical Position-Error Bounds in System Performance Analysis
【24h】

Determination of Circular and Spherical Position-Error Bounds in System Performance Analysis

机译:系统性能分析中圆形和球形位置误差界的确定

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

THIS Note presents a methodology for determining circular andnspherical position-error bounds for Gaussian random-errornprocesses, such as are commonly encountered in covariance-based-nnavigation system performance analysis. Such analyses typicallynrequire an assessment of the achievable position accuracy in the formnof a planar- or spatial-error characterization. Planar position error isnconveniently characterized by establishing the radius of a circle thatnencompasses a prescribed percentage of all possible outcomes in anhorizontal (or sometime vertical) plane. When the percentage ofnoutcomes is specified at 50%, the corresponding radial error is thenfamiliar circular error probable (CEP). Spatial position error isnconveniently characterized by establishing the radius of a sphere thatnencompasses a prescribed percentage of all possible 3-D position-nerror outcomes. When the percentage is specified at 50%, thencorresponding radial error is the spherical error probable (SEP). Thenproblem of determining CEP and SEP is of long standing and hasnbeen the subject of numerous earlier works (see [1–8], for example).nThree approaches have traditionally been taken in determiningnCEP and SEP. The first approach is to numerically integrate a classicnprobability integral, thereby providing a tabular definition for thenCEP or SEP [2,5,7]. Once the results of the numerical integration arenavailable, they may be used as the basis of a closed-form expressionnfor CEP or SEP. This constitutes the second approach, which hasntraditionally been used in arriving at approximations for CEP and innwhich the CEP function is represented over one or more ranges bynpolynomials chosen to achieve a desired accuracy [8]. This is also thenapproach taken in the present Note. The third approach is to simplifynthe probability integral, thereby allowing an approximate closed-nform expression for the CEP or SEP [1,4,6]. The best known of thenclosed-form expressions for CEP and SEP is due to Grubbs [6], withnfurther elaboration and discussion provided in [2,3,8].
机译:本注释介绍了一种确定高斯随机误差过程的圆形和非球形位置误差范围的方法,例如在基于协方差的导航系统性能分析中经常遇到的过程。这样的分析通常需要以平面误差或空间误差表征的形式对可达到的位置精度进行评估。平面位置误差的不便之处在于,建立一个圆的半径,该圆的半径不超过水平(或有时垂直)平面上所有可能结果的规定百分比。当结果的百分比指定为50%时,相应的径向误差就是可能的圆形误差(CEP)。通过确定不超过所有可能的3D位置误差结果的规定百分比的球体半径,可以方便地表征空间位置误差。当百分比指定为50%时,相应的径向误差就是可能的球形误差(SEP)。那么确定CEP和SEP的问题由来已久,并且尚未成为许多早期工作的主题(例如,参见[1-8])。n传统上,在确定nCEP和SEP时采用了三种方法。第一种方法是对经典的概率积分进行数值积分,从而为CEP或SEP提供表格定义[2,5,7]。一旦无法获得数值积分的结果,就可以将它们用作CEP或SEP的闭式表达式的基础。这构成了第二种方法,该方法在用于CEP逼近的过程中并没有采用传统方法,其中CEP函数在一个或多个范围内由为实现所需精度而选择的多项式表示[8]。这也是本说明中采用的方法。第三种方法是简化概率积分,从而允许CEP或SEP的近似闭式表达式[1,4,6]。关于CEP和SEP的闭式表达式最著名的是Grubbs [6],在[2,3,8]中进行了进一步的阐述和讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号