首页> 外文期刊>Journal of Geodesy >Galileo and QZSS precise orbit and clock determination using new satellite metadata
【24h】

Galileo and QZSS precise orbit and clock determination using new satellite metadata

机译:伽利略和QZSS使用新卫星元数据精确轨道和时钟确定

获取原文
获取原文并翻译 | 示例
           

摘要

During 2016-2018, satellite metadata/information including antenna parameters, attitude laws and physical characteristics such as mass, dimensions and optical properties were released for Galileo and QZSS (except for the QZS-1 optical coefficients). These metadata are critical for improving the accuracy of precise orbit and clock determination. In this contribution, we evaluate the benefits of these new metadata to orbit and clock in three aspects: the phase center offsets and variations (PCO and PCV), the yaw-attitude model and solar radiation pressure (SRP) model. The updating of Galileo PCO and PCV corrections, from the values estimated by Deutsches Zentrum fur Luft- und Raumfahrt and Deutsches GeoForschungsZentrum to the chamber calibrations disclosed by new metadata, has only a slight influence on Galileo orbits, with overlap differences within only 1mm. By modeling the yaw attitude of Galileo satellites and QZS-2 spacecraft (SVN J002) according to new published attitude laws, the residuals of ionosphere-free carrier-phase combinations can be obviously decreased in yaw maneuver seasons. With the new attitude models, the 3D overlap RMS in eclipse seasons can be decreased from 12.3cm, 14.7cm, 16.8cm and 34.7cm to 11.7cm, 13.4cm, 15.8cm and 32.9cm for Galileo In-Orbit Validation (IOV), Full Operational Capability (FOC), FOC in elliptical orbits (FOCe) and QZS-2 satellites, respectively. By applying the a priori box-wing SRP model with new satellite dimensions and optical coefficients, the 3D overlap RMS are 5.3cm, 6.2cm, 5.3cm and 16.6cm for Galileo IOV, FOCe, FOC and QZS-2 satellites, with improvements of 11.0%, 14.7%, 14.0% and 13.8% when compared with the updated Extended CODE Orbit Model (ECOM2). The satellite laser ranging (SLR) validation reveals that the a priori box-wing model has smaller mean biases of -0.4cm, -0.4cm and 0.6cm for Galileo FOCe, FOC and QZS-2 satellites, while a slightly larger mean bias of -1.0cm is observed for Galileo IOV satellites. Moreover, the SLR residual dependencies of Galileo IOV and FOC satellites on the elongation angle almost vanish when the a priori box-wing SRP model is applied. As for satellite clocks, a visible bump appears in the Modified Allan deviation at integration time of 20,000s for Galileo Passive Hydrogen Maser with ECOM2, while it almost vanishes when the a priori box-wing SRP model and new metadata are applied. The standard deviations of clock overlap can also be significantly reduced by using new metadata.
机译:在2016 - 2018年期间,为伽利略和QZSS释放包括天线参数,姿态法,尺寸和光学性质等天线参数,姿态法和物理特性的卫星元数据/信息(除了QZS-1光学系数除外)。这些元数据对于提高精确轨道和时钟确定的准确性至关重要。在这一贡献中,我们在三个方面评估了这些新元数据对轨道和时钟的好处:相位中心偏移和变化(PCO和PCV),横摆姿态模型和太阳辐射压力(SRP)模型。从Deutsches Zentrum Fur Luft-und Raumfahrt和Deutsches Geoforschungszentrum估算的伽利略PCO和PCV校正的更新从新的元数据所公开的腔室校准,对伽利略轨道仅有轻微影响,仅在1mm内重叠差异。通过塑造伽利略卫星和QZS-2航天器(SVN J002)的偏航态度,根据新的发布态度法,在偏航机动季节中可以明显减少离子层的载体相相组合的残留物。随着新的态度模型,Eclipse季节的3D重叠RMS可以从12.3cm,14.7cm,16.8cm和34.7cm,13.4cm,15.8cm和32.9cm for 34.7cm for 34.7cm进行伽利略诊断(iov),完全运行能力(FOC),分别围攻椭圆轨道(FOCE)和QZS-2卫星。通过使用新的卫星尺寸和光学系数应用Priori Box-Wing SRP模型,3D重叠RMS为5.3cm,6.2cm,5.3cm和16.6cm for galileo iov,foce,foc和qzs-2卫星,有改进与更新的扩展码轨道模型(ECOM2)相比,11.0%,14.7%,14.0%和13.8%。卫星激光测距(SLR)验证揭示了先验箱翼模型的平均偏差为-0.4cm,-0.4cm和0.6cm,适用于伽利略Foce,foc和qzs-2卫星,而平均偏差略大伽利略IOV卫星观察到-1.0cm。此外,伽利略IOV和Foc卫星的SLR剩余依赖性在应用先验箱机翼SRP模型时几乎消失。至于卫星时钟,通过ECOM2的Galileo被动氢气泥扫描器的改进的Allan偏差在改进的Allan偏差中出现了可见的凹​​凸,而使用ECOM2,当应用先验箱机翼SRP模型和新的元数据时几乎消失。通过使用新的元数据,也可以显着降低时钟重叠的标准偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号