...
首页> 外文期刊>Journal of Geodesy >Galileo and QZSS precise orbit and clock determination using new satellite metadata
【24h】

Galileo and QZSS precise orbit and clock determination using new satellite metadata

机译:伽利略和QZSS使用新的卫星元数据精确确定轨道和时钟

获取原文
获取原文并翻译 | 示例
           

摘要

During 2016-2018, satellite metadata/information including antenna parameters, attitude laws and physical characteristics such as mass, dimensions and optical properties were released for Galileo and QZSS (except for the QZS-1 optical coefficients). These metadata are critical for improving the accuracy of precise orbit and clock determination. In this contribution, we evaluate the benefits of these new metadata to orbit and clock in three aspects: the phase center offsets and variations (PCO and PCV), the yaw-attitude model and solar radiation pressure (SRP) model. The updating of Galileo PCO and PCV corrections, from the values estimated by Deutsches Zentrum fur Luft- und Raumfahrt and Deutsches GeoForschungsZentrum to the chamber calibrations disclosed by new metadata, has only a slight influence on Galileo orbits, with overlap differences within only 1mm. By modeling the yaw attitude of Galileo satellites and QZS-2 spacecraft (SVN J002) according to new published attitude laws, the residuals of ionosphere-free carrier-phase combinations can be obviously decreased in yaw maneuver seasons. With the new attitude models, the 3D overlap RMS in eclipse seasons can be decreased from 12.3cm, 14.7cm, 16.8cm and 34.7cm to 11.7cm, 13.4cm, 15.8cm and 32.9cm for Galileo In-Orbit Validation (IOV), Full Operational Capability (FOC), FOC in elliptical orbits (FOCe) and QZS-2 satellites, respectively. By applying the a priori box-wing SRP model with new satellite dimensions and optical coefficients, the 3D overlap RMS are 5.3cm, 6.2cm, 5.3cm and 16.6cm for Galileo IOV, FOCe, FOC and QZS-2 satellites, with improvements of 11.0%, 14.7%, 14.0% and 13.8% when compared with the updated Extended CODE Orbit Model (ECOM2). The satellite laser ranging (SLR) validation reveals that the a priori box-wing model has smaller mean biases of -0.4cm, -0.4cm and 0.6cm for Galileo FOCe, FOC and QZS-2 satellites, while a slightly larger mean bias of -1.0cm is observed for Galileo IOV satellites. Moreover, the SLR residual dependencies of Galileo IOV and FOC satellites on the elongation angle almost vanish when the a priori box-wing SRP model is applied. As for satellite clocks, a visible bump appears in the Modified Allan deviation at integration time of 20,000s for Galileo Passive Hydrogen Maser with ECOM2, while it almost vanishes when the a priori box-wing SRP model and new metadata are applied. The standard deviations of clock overlap can also be significantly reduced by using new metadata.
机译:在2016-2018年期间,发布了伽利略和QZSS的卫星元数据/信息,包括天线参数,姿态定律和物理特性(例如质量,尺寸和光学特性)(QZS-1光学系数除外)。这些元数据对于提高精确轨道和时钟确定的准确性至关重要。在此贡献中,我们从三个方面评估这些新元数据对轨道和时钟的好处:相位中心偏移和变化(PCO和PCV),偏航姿态模型和太阳辐射压力(SRP)模型。从Deutsches Zentrum fur Luft-und Raumfahrt和Deutsches GeoForschungsZentrum估计的值到新的元数据所公开的舱室校准,对Galileo PCO和PCV校正的更新对Galileo轨道的影响很小,重叠差异在1mm之内。通过根据新发布的姿态定律对Galileo卫星和QZS-2航天器(SVN J002)的偏航姿态进行建模,可以在偏航机动季节明显减少无电离层载波相组合的残差。使用新的姿态模型,可以将月食季节的3D重叠RMS从12.3cm,14.7cm,16.8cm和34.7cm减小到Galileo在轨验证(IOV)的11.7cm,13.4cm,15.8cm和32.9cm,全面运行能力(FOC),椭圆轨道上的FOC(FOCe)和QZS-2卫星。通过使用具有新的卫星尺寸和光学系数的先验盒翼SRP模型,伽利略IOV,FOCe,FOC和QZS-2卫星的3D重叠RMS分别为5.3cm,6.2cm,5.3cm和16.6cm,改进了与更新的扩展代码轨道模型(ECOM2)相比,分别为11.0%,14.7%,14.0%和13.8%。卫星激光测距(SLR)验证表明,先验盒翼模型对伽利略FOCe,FOC和QZS-2卫星的平均偏差较小,分别为-0.4cm,-0.4cm和0.6cm,而平均偏差较大的为伽利略IOV卫星观测到-1.0厘米。此外,当应用先验盒翼SRP模型时,伽利略IOV和FOC卫星对伸长角的SLR残留依赖性几乎消失。对于卫星时钟,带有ECOM2的伽利略被动式氢Maser的积分时间为20,000s时,修正的Allan偏差中出现了可见的颠簸,而当应用先验盒翼SRP模型和新的元数据时,它几乎消失了。通过使用新的元数据,时钟重叠的标准偏差也可以大大降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号