...
首页> 外文期刊>Journal of Geodesy >Smoothing and predicting celestial pole offsets using a Kalman filter and smoother
【24h】

Smoothing and predicting celestial pole offsets using a Kalman filter and smoother

机译:使用卡尔曼滤波器和更平滑器对天极偏移进行平滑和预测

获取原文
获取原文并翻译 | 示例
           

摘要

It has been recognized since the early days of interplanetary spaceflight that accurate navigation requires taking into account changes in the Earth's rotation. In the 1960s, tracking anomalies during the Ranger VII and VIII lunar missions were traced to errors in the Earth orientation parameters. As a result, Earth orientation calibration methods were improved to support the Mariner IV and V planetary missions. Today, accurate Earth orientation parameters are used to track and navigate every interplanetary spaceflight mission. The approach taken at JPL (Jet Propulsion Laboratory) to provide the interplanetary spacecraft tracking and navigation teams with the UT1 and polar motion parameters that they need is based upon the use of a Kalman filter to combine past measurements of these parameters and predict their future evolution. A model was then used to provide the nutation/precession components of the Earth's orientation. As a result, variations caused by the free core nutation were not taken into account. But for the highest accuracy, these variations must be considered. So JPL recently developed an approach based upon the use of a Kalman filter and smoother to provide smoothed and predicted celestial pole offsets (CPOs) to the interplanetary spacecraft tracking and navigation teams. The approach used at JPL to do this and an evaluation of the accuracy of the predicted CPOs is given here. For assessing the quality of JPL's nutation predictions, we compare the time series of dX, dY provided by JPL with the predictions obtained from the IERS Rapid Service/Prediction Centre. Our results confirmed that the approach recently developed by JPL can be used for the successful nutation prediction. In particular, we show that after 90 days of prediction, the estimated errors are 43% lower for dX and 33% lower for dY than in the case of the official IERS products, and an average improvement is 19% and 22% for dX and dY, respectively.
机译:从行星际航天的早期开始就已经认识到,准确的导航需要考虑到地球自转的变化。在1960年代,在游骑兵VII和VIII登月任务期间跟踪异常被追溯到地球方向参数中的错误。结果,改进了地球定向校准方法,以支持Mariner IV和V行星任务。如今,精确的地球方向参数已用于跟踪和导航每个行星际太空飞行任务。 JPL(喷气推进实验室)采取的为行星际航天器跟踪和导航团队提供所需的UT1和极运动参数的方法是基于卡尔曼滤波器的使用,以结合这些参数的过去测量并预测其未来发展。然后使用模型来提供地球方向的章动/进动分量。结果,未考虑由自由芯螺母引起的变化。但是为了获得最高的精度,必须考虑这些变化。因此,JPL最近开发了一种基于卡尔曼滤波器和平滑器的方法,可以为行星际航天器跟踪和导航团队提供经过平滑和预测的天体极点偏移(CPO)。 JPL用来执行此操作的方法以及对预测的CPO准确性的评估在此处给出。为了评估JPL的章动预测的质量,我们将JPL提供的dX,dY的时间序列与从IERS快速服务/预测中心获得的预测进行了比较。我们的结果证实,JPL最近开发的方法可用于成功的章动预测。特别是,我们显示,经过90天的预测,与官方IERS产品相比,dX的估计误差降低了43%,dY的估计误差降低了33%,dX和IEX的平均误差分别为19%和22% dY。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号