首页> 外文期刊>Journal of Fusion Energy >FPGA and Embedded Systems Based Fast Data Acquisition and Processing for GEM Detectors
【24h】

FPGA and Embedded Systems Based Fast Data Acquisition and Processing for GEM Detectors

机译:基于FPGA和嵌入式系统的基于GEM探测器的快速数据采集和处理

获取原文
获取原文并翻译 | 示例
           

摘要

Gas electron multiplier (GEM) detectors (Sauli in Nucl Instrum Methods Phys Res A 805:2-24, 2016. https://doi.org/10.1016/j.nima.2015.07.060 (special issue in memory of Glenn F. Knoll); Buzulutskov in Instrum Exp Tech 50(3):287-310, 2007. https://doi.org/10.1134/S0020441207030013) are widely used for detection of ionizing radiation. When used in the proportional mode, they provide information about time, location, and energy of a detected particle (Chernyshova et al. in Fusion Eng Design, 2017. https://doi.org/10.1016/j.fusengdes.2017.03.107; Altunbas et al. in Nucl Instrum Methods Phys Res A 490(1-2):177-203, 2002. https://doi.org/10.1016/S0168-9002(02)00910-5. http://linkinghub.elsevier.com/retrieve/pii/S0168900202009105). Modern technologies allow full utilization of detector properties, by acquiring the waveform of output current pulses and processing them using sophisticated digital signal processing (DSP) algorithms. The current pulses must be digitized at high speed (up to 125 MHz) with high resolution (up to 12-bits). Due to the high volume of the produced data, it is necessary to provide the high-performance data acquisition system (DAQ) to transmit the data to processing units. Efficient processing of the GEM data requires distributed parallel processing system to perform multiple tasks (Czarski et al. in Rev Sci Instrum 87(11), 11E336, 2016. https://doi.org/10.1063/1.4961559): (1) Filter out the background and transmit only hit related data. (2) Extract the parameters of a hit, describing the time and charge (related to energy). (3) Estimate the hit position by combining information from multiple anode pads. (4) In case of 2D GEM detectors, correlate pulses received from X and Y pads (pixels) or W, U and V pads (pixels). (5) Separate the hits overlapping in space or in time (if possible) to support detector operation at higher rates. The above functionalities may be achieved in different hardware architectures. The typical hardware platforms include FPGA chips, standard or embedded computer systems with different computation accelerators (Wojenski et al. in J Instrum 11(11):C11035, 2016. http://stacks.iop.org/1748-0221/11/i=11/a=C11035; Nowak et al. in J Phys Conf Ser 513(5):052-024, 2014. https://doi.org/10.1088/1742-6596/513/5/052024. http://stacks.iop.org/1742-6596/513/i=5/a=052024?key=crossref.c5912cfa72c30b309821e14c4384948f. The paper shows possible solutions with their feasibility for particular applications.
机译:气体电子乘法器(Gem)探测器(Nucl Instrum方法中的Sauli方法Phys Res A 805:2-24,2016。https://doi.org/10.1016/j.nima.2015.07.060(在Glenn F记忆中的特殊问题Knoll); Buzulutskov In Instrum Exp Tech 50(3)://doi.org/10.1134/S0020441207030013)广泛用于检测电离辐射。当以比例模式使用时,它们提供有关检测到的粒子的时间,位置和能量的信息(Chernyshova等。在Fusion Eng Design,2017. https://doi.org/10.1016/j.fusengdes.2017.03.107 ; Altunbas等人。在Nucl Instrum方法中,Phy Res 490(1-2):177-203,2002. https://doi.org/10.1016/s0168-9002(02)00910-5。http:// linkinghub .elsevier.com /检索/ pii / s0168900202009105)。现代技术允许充分利用检测器属性,通过获取输出电流脉冲的波形并使用复杂的数字信号处理(DSP)算法来处理它们。电流脉冲必须高速(高达125 MHz)以高分辨率(最多12位)数字化。由于产生的数据量大,必须提供高性能数据采集系统(DAQ)来将数据传输到处理单元。高效处理宝石数据需要分布式并行处理系统来执行多个任务(Czarski等人。在Rev SCI Instrum 87(11),11E336,2016。https://doi.org/10.1063/1.4961559):(1)过滤器亮面并仅发送击中相关数据。 (2)提取命中的参数,描述时间和充电(与能量有关)。 (3)通过组合来自多个阳极焊盘的信息来估计命中位置。 (4)在2D GEM探测器的情况下,从X和Y焊盘(像素)或W,U和V PADS(像素)接收的相关脉冲。 (5)将空间或时间(如果可能)重叠的命中率分开,以支持更高速率的检测器操作。可以在不同的硬件架构中实现上述功能。典型的硬件平台包括具有不同计算加速器的FPGA芯片,标准或嵌入式计算机系统(Wojenski等人。在J Instrum 11(11)中:C11035,2016. http://stacks.iop.org/1748-0221/11/ i = 11 / a = c11035; nowak等人。在j physfunfer 513(5)中:052-024,2014. https://doi.org/10.1088/1742-6596/1742-6596/513/5/052024 .thth: //stacks.iop.org/1742-6596/513/i=5/a=052024?Key=CrossRef.c5912CFA72C30B309821C30B309821C30B4384948F。本文显示了可行性特定应用的可行性解决方案。

著录项

  • 来源
    《Journal of Fusion Energy》 |2019年第4期|480-489|共10页
  • 作者单位

    Warsaw Univ Technol Inst Elect Syst Nowowiejska 15-19 PL-00665 Warsaw Poland;

    Warsaw Univ Technol Inst Elect Syst Nowowiejska 15-19 PL-00665 Warsaw Poland;

    Warsaw Univ Technol Inst Elect Syst Nowowiejska 15-19 PL-00665 Warsaw Poland;

    Inst Plasma Phys & Laser Microfus Hery 23 PL-01497 Warsaw Poland;

    Inst Plasma Phys & Laser Microfus Hery 23 PL-01497 Warsaw Poland;

    Warsaw Univ Technol Inst Elect Syst Nowowiejska 15-19 PL-00665 Warsaw Poland;

    Warsaw Univ Technol Inst Elect Syst Nowowiejska 15-19 PL-00665 Warsaw Poland;

    Warsaw Univ Technol Inst Elect Syst Nowowiejska 15-19 PL-00665 Warsaw Poland;

    Inst Plasma Phys & Laser Microfus Hery 23 PL-01497 Warsaw Poland;

    Warsaw Univ Technol Inst Elect Syst Nowowiejska 15-19 PL-00665 Warsaw Poland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    X-ray detectors; GEM detectors; Hot plasma diagnostics; FPGA;

    机译:X射线探测器;宝石探测器;热等离子体诊断;FPGA;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号