首页> 外文期刊>Journal of Fuel Cell Science and Technology >Performance of an Integrated Microtubular Fuel Reformer and Solid Oxide Fuel Cell System
【24h】

Performance of an Integrated Microtubular Fuel Reformer and Solid Oxide Fuel Cell System

机译:集成式微管燃料重整器和固体氧化物燃料电池系统的性能

获取原文
获取原文并翻译 | 示例
           

摘要

A numerical model is developed to study the performance of an integrated tubular fuelnreformer and solid oxide fuel cell (SOFC) system. The model is used to study how thenphysical dimensions of the reformer, gas composition and the species flow rates of anmethane feed stream undergoing autothermal reforming (ATR) affect the performance ofnan SOFC. The temperature in the reformer changes significantly due to the heat ofnreaction, and the reaction rates are very sensitive to the temperature and species concentrations.nTherefore, it is necessary to couple the heat and mass transfer to accuratelynmodel the species conversion of the reformate stream. The reactions in the SOFC contributenmuch less to the temperature distribution than in the reformer and therefore thenheat transfer in the SOFC is not necessary to model. A packed bed reactor is used tondescribe the reformer, where the chemical mechanism and kinetics are taken from thenliterature for nickel catalyst on a gamma alumina support. Heat transfer in the reformer’sngas and solid catalyst phases are coupled while the gas phase in the SOFC is at anuniform temperature. The SOFC gas species are modeled using a plug flow reactor. Thenmodels are in good agreement with experimental data. It is observed that the reformerntemperature decreases with an increase in the reformer inlet water-to-fuel ratio and therenis a slight decrease in the voltage of the SOFC from higher water content but an increasenin limiting current density from a higher hydrogen production. The numerical resultsnshow that the flow rates and reformer length are critical design parameters because if notnproperly designed they can lead to incomplete conversion of the methane fuel to hydrogennin the reformer, which has the greatest impact on the SOFC performance in the integratednATR reformer and SOFC system.
机译:开发了一个数值模型来研究集成式管状燃料重整器和固体氧化物燃料电池(SOFC)系统的性能。该模型用于研究重整器的物理尺寸,气体组成以及进行自热重整(ATR)的甲烷进料流的物种流速如何影响南SOFC的性能。重整器中的温度由于未反应的热而发生显着变化,反应速率对温度和物质浓度非常敏感。因此,有必要将热量和传质耦合,以精确地模拟重整物流的物质转化。与重整器相比,SOFC中的反应对温度分布的影响要小得多,因此,无需建模SOFC中的传热。使用填充床反应器来描述重整器,其中化学机理和动力学取自随后的文献,用于γ-氧化铝载体上的镍催化剂。重整炉的气相和固体催化剂相之间的传热是耦合的,而SOFC中的气相温度是均匀的。使用塞流反应器对SOFC气体物种进行建模。模型与实验数据吻合良好。观察到,重整温度随着重整器入口水/燃料比的增加而降低,并且由于较高的水含量而导致SOFC的电压略有降低,但是由于较高的氢产生而使极限电流密度增加。数值结果表明,流速和重整器长度是关键的设计参数,因为如果设计不当,它们会导致重整器中甲烷燃料不完全转化为氢,这对集成的nATR重整器和SOFC系统中的SOFC性能影响最大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号