首页> 中国专利> 燃料电池系统重整器的燃烧器及重整器和燃料电池系统

燃料电池系统重整器的燃烧器及重整器和燃料电池系统

摘要

本发明涉及燃烧器,其用于燃料电池系统的重整器,它包括一个包括有催化剂的本体;一个嵌入催化剂中用来为催化剂提供辅助热源的加热构件。

著录项

  • 公开/公告号CN1805199A

    专利类型发明专利

  • 公开/公告日2006-07-19

    原文格式PDF

  • 申请/专利权人 三星SDI株式会社;

    申请/专利号CN200610004884.3

  • 发明设计人 金周龙;朴真;孙寅赫;

    申请日2006-01-10

  • 分类号H01M8/06;H01M8/04;H01M8/00;

  • 代理机构北京市柳沈律师事务所;

  • 代理人陶凤波

  • 地址 韩国京畿道

  • 入库时间 2023-12-17 17:29:38

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-03-01

    未缴年费专利权终止 IPC(主分类):H01M8/06 授权公告日:20080514 终止日期:20160110 申请日:20060110

    专利权的终止

  • 2008-05-14

    授权

    授权

  • 2006-09-13

    实质审查的生效

    实质审查的生效

  • 2006-07-19

    公开

    公开

说明书

技术领域

本发明涉及一种燃料电池系统,更详尽的说是用于燃料电池系统重整器的燃烧器结构。

背景技术

燃料电池是用于产生电力的系统。在燃料电池中,氧和氢之间反应产生的能量直接重整成电能,氢包括在碳氢基材料中如甲醇,乙醇和天然气。

根据使用的电解质类型,燃料电池分成不同种类,包括:磷酸盐燃料电池,熔融碳酸盐的燃料电池,固体氧化物燃料电池和聚合物电解质或碱性燃料电池。尽管这些不同种类的燃料电池的运行都使用同一原理,但是他们在燃料类型,催化剂和使用的电解质上及运行温度存在着不同。

聚合物电解质燃料电池(PEMFC,polymer electrolyte membrane fuel cell)最近得到发展。对比其它类型的燃料电池,PEMFC具有优秀的输出特征,运行温度低,启动和响应快的特征。PEMFC可被用于车辆的移动电源,家庭和建筑的分布式电源或者作为如电子设备的便携电源。因此PEMFC具有广泛的应用领域。

PEMFC的基本构成是堆栈,重整器,燃料箱和燃料泵。堆栈构成了燃料电池的主体。燃料泵从燃料箱中向重整器提供燃料。重整器重整燃料产生包括氢的重整气体,并提供重整气体到堆栈。

相应的,在堆栈中,从重整器中得到的氢经过和另外提供到重整器的氧发生电化学反应产生电能。

上面描述结构的燃料电池系统中的重整器,燃料在热能作用下经过化学催化反应产生氢气,其拥有一个燃烧器总成来产生热能和一个重整反应器来在热能作用下经过化学催化反应产生氢。因此,燃烧器总成拥有通过燃料和空气在反应器中提供的氧化催化剂作用下发生氧化反应产生热能的结构。

可是,当通常的重整器运行开始时,通过利用一个分开的加热装置为燃烧器总成的反应器本体提供一个热源,重整器保持氧化催化剂的初始反应温度在一个预设的温度范围内,这种结构将会由于将反应器主体全部加热到反应温度范围而导致能量损失。

因为燃料系统是使用堆栈产生的电能(寄生能)驱动的,寄生能被增加的加热装置消费掉。相应的整个系统的性能和能效就会降低。

另外,因为重整器要加热反应器本体来保持氧化催化剂的初始反应温度,初始的氧化催化剂的反应时间被延时,因而重整器的热效率和性能低下。

发明内容

在一个具体的实施例中,提供了一种用于燃料电池的重整器的燃烧器,它能够在燃烧器总成上减少氧化催化剂初始反应时间,并能够降低维持氧化催化剂初始反应温度所需的能耗。

在另一个具体实施例中,提供了一种使用上述燃烧器的燃料电池重整器和使用他的燃料电池系统。

在本发明的一个具体实施例中,重整器的燃烧器包括:具有在其内部的催化剂的本体;和加热构件,处于该催化剂中,适合于为催化剂提供辅助热源。

在进一步的实施例中,重整器的燃烧器通过提供到燃烧器本体中的燃料和氧的氧化反应来产生主热源。

在一个实施例中,该燃烧器本体具有管状结构,管的两端基本上封闭,并且其一端有入口部分,另一端有出口部分。

在一个实施例中,该加热构件可具有加热丝,其适合于利用电力产生热,该加热构件可在靠近该入口部分嵌入到该催化剂中。

在进一步的实施例中,该催化剂包括球丸形结构。

在一个实施例中,一种用于燃料电池系统的重整器包括:双管结构的本体,其具有相互独立的第一空间和第二空间;燃烧器总成,其具有装载于该第一空间中的第一催化剂和该第一催化剂中的加热构件;和重整反应器,其具有装载于第二空间中的第二催化剂。

在一个实施例种,燃烧器总成通过所述加热构件产生辅助热源,并且通过该第一催化剂由第一燃料和氧的氧化反应产生主热源,并且,该重整反应器吸收主热源,以便通过该第二催化剂由催化重整反应来由该第二燃料生成氢气。

在一个实施例中,该本体可包括:第一本体,其具有一个预置内部空间;和第二本体,其朝该第一本体的内部的中心设置,其中,该第一空间形成在该第二本体中,而该第二空间形成在该第一本体和该第二本体之间。

在一个实施例中,该第二本体具有管状结构,其两端基本上封闭,并且其一端具有第一入口部分,其另一端具有第一出口部分。

在一个实施例中,该第一本体具有管状结构,其两端基本上封闭,并且其一端具有第二入口部分,其另一端具有第二出口部分。

在进一步的实施例中,该加热构件在靠近该第一入口部分嵌入到该第一催化剂中。

在一个实施例中,一种燃料电池系统,包括:电发生器,其适合于通过氧和氢的电化学反应来产生电能;重整器,其适合于利用热能通过化学催化反应而由燃料产生氢,并将氢提供给该电发生器;燃料供应总成,其适合于给该重整器提供燃料;和氧供应总成,其适合于给该电发生器和该重整器供应氧,其中该重整器包括:双管结构的本体,其具有相互独立的第一空间和第二空间;燃烧器总成,其具有装载于该第一空间中的第一催化剂和该第一催化剂中的加热构件;和重整反应器,其具有装载于第二空间中的第二催化剂。

附图说明

本发明的其他实施例可以通过下面这些实施例的描述显现出来并更快速的被领会,关联的附图如下:

图1是根据本发明的实施例的燃料电池整体示意视图;

图2是图1中堆栈的内部透视图;

图3是根据本发明的实施例的重整器透视示意图;和

图4是图3的截面视图。

具体实施方式

现在将对本发明的优选实施例进行详细的描述,其示例在附图中阐明。下面描述的实施例将通过相关的附图来说明。

图1是根据本发明的实施例的燃料电池整体示意视图,图2是图1中堆栈的内部透视图。

参照在图中展示的一个实施例,在根据本发明的燃料电池系统100中使用聚合物电解质燃料电池(PEMFC)方法,此方法的氢是通过重整含氢燃料产生的,并且是通过氢气和氧气的电化学作用产生电能。

在燃料电池系统100中,被用作产生电能的燃料包括含氢的液体或气体燃料,如甲醇,乙醇和天然气。在下面的实施例中为了方便燃料被理解为液体形式。

而且,在燃料电池系统100中和氢反应的氧化剂气体可以是存储在分离的存储容器中的氧气,以可以是包括氧气的普通空气,在如下的实施例中使用空气。

根据本发明的实施例的燃料电池系统100包括:电发生器11,以通过氢和氧的电化学反应产生电能;重整器30,以从燃料产生氢并将氢供给电发生器11;燃料供应总成50,以向重整器30提供燃料;以及氧供应总成70,以分别向重整器30和电发生器11供应氧。

如图2所示,电发生器11形成燃料电池单元,此单元是在其中心使用隔膜电极总成(MEA)12和在其两边提供的隔离物16(也被称作双极板)实现的。

燃料电池系统100可能包括多个上述结构的电发生器11,其连续的排列形成堆栈10,因为堆栈10可以拥有一般的聚合物电解质燃料电池(PEMFC)的结构,在这里省略其细节描述。

在一个实施例中,重整器30通过化学催化反应从燃料中产生氢,例如:使用热能的蒸汽重整催化反应、部分氧化催化反应或者自然反应,重整器30的结构将参照图3和4给出进一步说明。

在一个实施例中,燃料供应总成50包括一个用来存储液体燃料的第一箱51、一个存储水的第二箱52和一个分别连接第一箱51和第二箱52的燃料泵,其用来从第一箱51和第二箱52中排出燃料和水。然后,第一箱可以通过管道61连接到一个重整器的燃烧器总成35,这将在下面进一步描述。

在一个实施例中,第一和第二箱51、52通过管道63连接到重整器30的重整反应器39,这将在下面描述。在一个实施例中通过管道63连接第一和第二箱51、52到重整反应器39可以有多种形式,如图所示,但是其连接结构并不局限于此。在另一个实施例中,可通过不同的管道各自连接。

在一个实施例中,氧供应总成70包括一个空气泵71,其用来按照预设的气压吸入空气并分别向燃烧器总成35和堆栈10的电发生器11提供空气。在一个实施例中,如图所示的氧气供应总成70,通过一个单独的空气泵71提供空气给燃烧器总成35和堆栈10的电发生器11,但不局限于此。在另一个实施例中,提供一对空气泵分别连接到燃烧器总成35和堆栈10的电发生器11。

当上述描述结构的燃料电池系统100运行时,从重整器30产生的氢被供给电发生器11并且空气被提供给电发生器11。然后,堆栈10通过氧和氢的电化学作用产生预设的电能,水和热。

在一个实施例中,燃料电池系统100可以通过使用一个总的微型计算机型的控制单元(没有示出)来基本上控制整个系统的驱动,例如操作燃料供应总成50,空气供应总成70和下面描述的加热构件33等等。

在下面结合附图详细的说明重整器30的结构。

图3是根据本发明的一个实施例的重整器的透视示意图,图4是图3的横截面图。

参照附图,在一个实施例中重整器30包括一个通过液体燃料和空气的催化氧化反应产生热能的燃烧器总成35,一个在热量作用下通过液体燃料和水的重整催化反应产生氢的重整反应器39。

根据一个实施例,重整器30包括一个本体30,其为配置有相互独立的第一空间(A)和第二空间(B)的双管结构。本体31包括第一本体38和处于第一本体38中的第二本体32。

在一个实施例中,用作重整反应器本体的第一本体38拥有预设的横截面面积和管状结构,管的两端基本上封闭,并且第一本体38拥有一个向外暴露的部分,该部分可以使用非金属绝缘材料或者有绝缘特性的金属制造。

在一个实施例中,用作燃烧器总成本体的第二本体32有一个比第一本体38小的横截面面积,其具有管状结构,管的两端基本上封闭。在一个实施例中,第二本体32朝第一本体38的内部的中间设置,在第一本体38内周和第二本体32外周之间存在一个空间,第二本体的一端通过第一本体38的一端伸向外面。

在一个实施例中,第二本体32使用通常导热的金属材料制成以便于从燃烧器总成32便利的提供产生的热能到第一本体38。

在一个实施例中,第二本体32是形成燃烧器总成35的燃烧器本体,燃烧器总成35拥有这样的结构:第二本体32形成的第一空间(A)填入氧化催化剂34,一个加热构件33部分地嵌入到氧化催化剂34中。

在一个实施例中,第二本体32有一个第一入口32a用来注入第一箱51提供的燃料和由空气泵71提供到第一空间(A)的空气,并且第二本体32的另一端有一个第一出口32b用来排出燃烧气体,此气体是在氧化催化剂34作用下通过燃料和空气的氧化反应产生的。在一个实施例中,第一入口32a可以通过管道65连接到空气泵70和第一箱51。

在一个实施例中,第一入口32a的结构为,如图所示,通过单个孔将从空气泵得到的空气和从第一箱51提供的燃料注入,但并不局限于此,在另一个实施例中,提供分别的孔来分别注入燃料和空气。

在进一步的实施例中,第二空间(B)在第一本体和第二本体之间形成,在其中填入重整催化剂37来在第一本体38中形成重整反应器39。

在一个实施例中,在第一本体38的一端有一个第二入口部分38a,其用来向第二空间B注入从第一箱51和第二箱52供应的燃料和水,在另一端有一个第二出口部分38b,用来排出在重整催化剂37的作用下燃料和水发生重整反应产生的氢。

在一个实施例中,如图所示,第二入口部分38a具有使用单个孔来注入从第一和第二箱供应的燃料和水,但并不局限于此。在另外的实施例中,可以提供分立的孔来分别注入燃料和水。在一个实施例中第二出口部分38b通过管道67连接到堆栈10的电发生器11。

在一个实施例中,燃烧器总成35接受液体燃料和水,在氧化催化剂34的作用下通过氧化反应来燃烧燃料和空气产生热能,并传输热能到重整反应器39,这在后面会描述。

在如上所述的一个实施例中,燃烧器总成35的第一空间A中填充氧化催化剂34,加热构件33在位于接近第二本体32的入口部分32a的位置被部分地嵌入到氧化催化剂34中。

在一个实施例中,加热构件33通过接受预设电力量来产生热能,其按照预设的初始反应温度来供应热能到氧化催化剂34,这个温度是初始启动燃料电池系统时氧化催化剂34进行氧化反应所必需的,即大约在60到100℃的温度范围。

在一个实施例中,安装加热构件33的原因是为了在燃料电池系统100启动时缩短氧化催化剂的起始反应时间,这是通过为氧化催化剂34提供一个分立的辅助热源来进一步加速燃料和空气的氧化反应实现的。

另外,在一个实施例中,氧化催化剂34燃烧燃料和空气来产生重整反应器39进行重整反应所需温度的主热源,此温度在大约200到300℃,并且包括催化剂材料例如铂(Pt)、钌(Ru)等,其呈球丸形式含于载体如氧化铝(Al2O3),硅酸盐(SiO2),或者二氧化钛(TiO2)等上。

在一个实施例中,重整反应器39吸收燃烧器总成35产生的热能,其通过燃料和水的蒸气重整(SR)催化反应从燃料和水产生氢。

在一个实施例中,在重整反应器39中的重整催化剂37吸收由燃烧器总成35产生的主热源,并加速蒸汽重整反应,并将催化剂材料如铜(Cu),镍(Ni),箔(Pt)等以球丸形式承载于如氧化铝(Al2O3),硅酸盐(SiO2),或者二氧化钛(TiO2)等载体上。

在下面将详细地描述根据本发明的一个实施例的燃料电池系统的工作过程。

在一个实施例中,当燃料电池系统100开始运行时,通过控制单元将预设的功率施加到加热构件33,然后加热构件使用电力的电阻来按照预设的温度产生热能,因此为达到氧化催化剂34进行氧化催化反应所需的预置的初始温度提供了辅助热源,此温度的范围大约在60-100℃。

在另一个实施例中,随后通过燃料泵53的运行,存储在第一箱51中的燃料被抽出,燃料通过第一入口部分32a供给到第二本体32中。

在另一个实施例中,空气在空气泵71的运行下通过第一入口部分32a供给第二本体32。

在一个实施例中,当燃料和空气通过燃烧器总成35,即穿过在第二本体32中填充的氧化催化剂34,他们发生催化氧化反应。在进一步的实施例中,因为在燃烧器总成35中的氧化催化剂34使用加热构件产生的辅助热源保持了氧化反应所需的初始温度,燃料和空气的氧化燃烧反应进一步加速。

在一个实施例中,通过在燃烧器总成35中的氧化催化剂34的作用下发生液体燃料和空气的氧化催化反应,液体燃料和空气燃烧,这产生了满足重整反应器39进行重整反应所需的预设温度的主热源,例如此温度为大约200-300℃

在一个实施例中,主热源通过第二本体32被重整到重整催化剂37,并且从第二本体32内部产生相应高温燃气,通过第一出口部分32b被排放到外面。

在一个进一步的实施例,在这种状态下,储存在第一箱51的液体燃料和储存在第二箱52里的水,用燃料泵53的运行来供给第一本体38的第二入口部分38a。

在一个实施例中,燃料和水穿过重整催化剂37进行蒸气重整反应,然后重整催化剂37接受从燃烧器总成35中产生的主热量,来维持用于重整反应所需的预设反应初始温度,如上描述。

同时,在一个进一步的实施例,在重整反应器39之内,由重整催化剂37以分解反应(吸热反应)来产生含氢的重整气体。

在一个实施例中,重整后的气体通过第二出口38b部分排出,并提供给堆栈10,并且由其产生的电能用作驱动预定的负载的电源,负载例如为:例如笔记本电脑、便携数字助理(PDA)等的便携电子设备,或者移动通讯终端。

在如以上所描述的实施例中,因为本发明具有部分被嵌入氧化催化剂中的加热构件,以构成重整器的燃烧器总成,这向氧化催化剂提供了一个辅助热源,从而,它能减少氧化催化剂的反应启动时间,从而总体重整器的性能和热效率最优。

此外,因为本发明能减少燃烧器总成的氧化催化剂预热所需要的能量消耗,它更加提高整个系统的性能和能效。

通过结合具体实施例对发明的描述,本领域的技术人员能够理解,本发明不局限于这些具体的实施例,而是包括所附权利要求及其等同物的精神和范围的各种变化形式。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号