首页> 外文期刊>Journal of Fuel Cell Science and Technology >Evaluation of Bi2V0.9Cu0.1O5.35—an Aurivillius-Type Conducting Oxide—as a Cathode Material for Single-Chamber Solid-Oxide Fuel Cells
【24h】

Evaluation of Bi2V0.9Cu0.1O5.35—an Aurivillius-Type Conducting Oxide—as a Cathode Material for Single-Chamber Solid-Oxide Fuel Cells

机译:Bi2V0.9Cu0.1O5.35(一种Aurivillius型导电氧化物)作为单室固体氧化物燃料电池的阴极材料的评估

获取原文
获取原文并翻译 | 示例
           

摘要

The compound Bi2V0.9Cu0.1O5.35, a typical Aurivillius-type fast oxygen ion conductor, was evaluated as a possible cathode material for single-chamber solid-oxide fuel cells operated under mixed propane and oxygen. The material was found to be structurally stable under various C3H8+O2 environments over a wide temperature range and furthermore displayed low catalytic activity for propane oxidation. However, at temperatures above 650°C, detrimental reactions between the cathode and the ceria electrolyte occurred, producing low conductivity interfacial phases. At these high temperatures the cathode additionally underwent extensive sintering and loss of porosity and, thus, stable fuel cell operation was limited to furnace temperatures of <600°C. Even under such conditions, however, the partial oxidation occurring at the anode (a ceria nickel cermet) resulted in cell temperatures as much as 70–110°C higher than the gas-phase temperature. This explains the sharp decrease in fuel cell performance with time during operation at a furnace temperature of 586°C. Under optimized conditions, a peak power density of ~60 mW/cm2 was obtained, which does not compete with recent values obtained from higher activity cathodes. Thus, the poor electrochemical activity of Bi2V0.9Cu0.1O5.35, combined with its chemical instability at higher temperatures, discourages further consideration of this material as a cathode in single-chamber fuel cells.
机译:化合物Bi2V0.9Cu0.1O5.35是典型的Aurivillius型快速氧离子导体,被评估为在丙烷和氧气混合下运行的单室固体氧化物燃料电池的可能阴极材料。发现该材料在宽温度范围内的各种C3H8 + O2环境下结构稳定,而且对丙烷氧化显示出低催化活性。但是,在高于650°C的温度下,阴极和二氧化铈电解质之间会发生有害反应,从而产生低电导率的界面相。在这些高温下,阴极还要进行大量烧结,并失去孔隙率,因此,稳定的燃料电池运行仅限于<600°C的炉温。但是,即使在这种条件下,在阳极(二氧化铈镍金属陶瓷)上发生的部分氧化也会导致电池温度比气相温度高70-110°C。这解释了在586°C的炉温下运行期间,燃料电池性能随时间的急剧下降。在优化的条件下,可获得约60 mW / cm2的峰值功率密度,该峰值功率密度与从更高活性的阴极获得的最新值不符。因此,Bi2V0.9Cu0.1O5.35的不良电化学活性,再加上其在较高温度下的化学不稳定性,阻碍了人们进一步考虑将该材料用作单室燃料电池的阴极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号