首页> 外文期刊>Journal of Food Science >Combined Osmotic and Membrane Distillation for Concentration of Anthocyanin from Muscadine Pomace
【24h】

Combined Osmotic and Membrane Distillation for Concentration of Anthocyanin from Muscadine Pomace

机译:渗透膜混合蒸馏精制麝香果渣中花色苷的含量

获取原文
获取原文并翻译 | 示例
       

摘要

Bioactive anthocyanins from aqueous extracts of muscadine grape pomace were concentrated using osmotic distillation (OD) and direct contact membrane distillation (DCMD) using polypropylene (PP) and poly(ethylene chlorotrifluoroethylene) (ECTFE) membranes. The driving force for OD is created by using a high concentration brine solution while the driving force for DCMD is generated by elevating the feed temperature relative to the permeate temperature. The brine concentration used was 4 M. The lowest fluxes were obtained for OD. Given the temperature sensitive nature of anthocyanins, the maximum temperature difference during DCMD was limited to 30 degrees C. The feed temperature was 40 degrees C and the permeate at 10 degrees C. Consequently, the maximum flux during DCMD was also limited. A combination of OD and DCMD was found to give the highest fluxes. High-performance liquid chromatography (HPLC) and HPLC-electrospray mass spectrometry were used to identify and quantify anthocyanins, cyanidin-3,5-O-diglucoside, delphinidin-3,5-O-diglucoside, petunidin-3,5-O-diglucoside, peonidin-3,5-O-diglucoside, and malvidin-3,5-O-diglucoside. The results obtained here suggest that, though water fluxes for DI water feed streams for PP and ECTFE membrane were similar, the fluxes obtained for the two membranes when using muscadine pomace extracts were different. Concentration factors of close to 3 was obtained for anthocyanins. Membranes also showed slightly different performance in the concentration process. Membrane surfaces were analyzed using scanning electron microscopy and Fourier-transformed infrared spectroscopy. The results suggest that adsorption of these anthocyanins on the membrane surface lead to performance differences. In an actual operation, selection of an appropriate membrane and regeneration of the membrane will be important for optimized performance. Practical Applications Anthocyanins are valuable therapeutic compounds, which are found in the solid residue left following fruit juice pressing. However, recovery and concentration of these therapeutic compounds remains challenging due to their stability. Here, a novel membrane-based unit operation has been investigated in order to concentrate the anthocyanins that have been extracted into aqueous solutions. The unit operation investigated here use mild processing conditions. Insights into the factors that need to be considered when optimizing of the unit operation for commercialization are discussed.
机译:使用渗透蒸馏(OD)浓缩麝香葡萄果渣水提取物中的生物活性花色苷,并使用聚丙烯(PP)和聚(乙烯氯三氟乙烯)(ECTFE)膜直接接触膜蒸馏(DCMD)。 OD的驱动力是通过使用高浓度盐水溶液产生的,而DCMD的驱动力是通过相对于渗透液温度升高进料温度来产生的。使用的盐水浓度为4M。获得的通量最低。考虑到花色苷的温度敏感性,将DCMD期间的最大温差限制为30摄氏度。进料温度为40摄氏度,渗透物的温度为10摄氏度。因此,DCMD期间的最大通量也受到限制。发现OD和DCMD的组合给出最高的通量。高效液相色谱(HPLC)和HPLC-电喷雾质谱法用于鉴定和定量花色苷,花青素3,5-O-二葡萄糖苷,delphinidin-3,5-O-二葡萄糖苷,petunidin-3,5-O-葡糖苷,peonidin-3,5-O-二葡糖苷和malvidin-3,5-O-二葡糖苷。此处获得的结果表明,尽管PP和ECTFE膜的去离子水进料流的水通量相似,但使用麝香葡萄果渣提取物时两种膜的通量却不同。花青素的浓度因子接近3。在浓缩过程中,膜的性能也略有不同。使用扫描电子显微镜和傅立叶变换红外光谱分析膜表面。结果表明这些花青苷在膜表面上的吸附导致性能差异。在实际操作中,选择合适的膜并进行再生对于优化性能至关重要。实际应用花色苷是有价值的治疗化合物,存在于果汁榨汁后残留的固体残留物中。然而,由于它们的稳定性,这些治疗化合物的回收和浓缩仍然具有挑战性。在这里,已经研究了一种新颖的基于膜的单元操作,以浓缩已提取到水溶液中的花色苷。在此调查的单元操作使用的加工条件温和。讨论了优化单元操作以实现商业化时需要考虑的因素。

著录项

  • 来源
    《Journal of Food Science》 |2019年第9期|2199-2208|共10页
  • 作者

  • 作者单位

    Univ Arkansas Ralph E Martin Coll Chem Engn 1475 Cato Springs Rd Fayetteville AR 72701 USA;

    Univ Arkansas Dept Food Sci 2650 N Young Ave Fayetteville AR 72704 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    cleaning; fouling; fruit juice; membrane contactor; polyphenol;

    机译:清洁结垢果汁;膜接触器多酚;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号