首页> 外文期刊>Journal of food engineering >Bottom-up model for understanding the effects of wheat endosperm microstructure on its mechanical strength
【24h】

Bottom-up model for understanding the effects of wheat endosperm microstructure on its mechanical strength

机译:自下而上的模型,用于了解小麦胚乳微观结构对其机械强度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Wheat flours are essential ingredients of daily food products like bread, cookies or pastries. Their quality depends on the milling process and mechanical strength of wheat grains. Although it is well known that the strength and rupture of grains are strongly controlled by the endosperm microstructure, the respective roles of the starch and polymer volume fractions and their adhesion are not yet fully understood. This typical biological microstructure can be modeled as a cemented granular material, where the two size populations of starch granules (large:A-type, small:B-type) are the particles, and the protein matrix, which partially fills the space between granules, plays the role of a cement. This structural model of wheat endosperm is used, together with mechanical characteristics of starch and proteins obtained by means of Atomic Force Microscopy (AFM) measurements, to simulate the mechanical behavior and breakage of wheat endosperm in milling process. We find that the porosity outweighs the effect of other parameters for the elastic modulus, which declines as a nearly linear function of porosity. We also show that the tensile strength is an increasing function of the amount and connectivity of starch granules with increasing concentration of stresses along chains of granules. This effect is more significant at low porosity where stress distribution is mainly controlled by the contact network between starch granules. This effect explains why the protein content is not fully correlated to vitreousness, and samples of similar protein content can be different in vitreosity. Finally, we find that the starch-granule adhesion strongly affects the tensile strength whereas the effect of starch volume fraction appears mainly at high interface adhesion, which is the case of hard type wheat grains. (C) 2016 Elsevier Ltd. All rights reserved.
机译:小麦粉是日常食品(例如面包,饼干或糕点)的基本成分。它们的质量取决于小麦籽粒的碾磨过程和机械强度。尽管众所周知,胚乳的微观结构强烈地控制着谷物的强度和破裂,但是淀粉和聚合物的体积分数以及它们的粘附性的各自作用还没有被完全理解。可以将这种典型的生物微观结构建模为胶结的颗粒材料,其中两种大小的淀粉颗粒(大:A型,小:B型)是颗粒,蛋白质基质则部分填充了颗粒之间的空间,起着水泥的作用。使用这种小麦胚乳的结构模型,以及通过原子力显微镜(AFM)测量获得的淀粉和蛋白质的机械特性,来模拟制粉过程中小麦胚乳的机械行为和破损。我们发现,孔隙率大于其他参数对弹性模量的影响,而弹性模量随孔隙率的线性函数下降。我们还表明,抗张强度是淀粉颗粒的数量和连通性的增加函数,随着沿着颗粒链的应力集中的增加。在低孔隙率(应力分布主要受淀粉颗粒之间的接触网络控制)的情况下,这种效果更为明显。这种效应解释了为什么蛋白质含量与玻璃度不完全相关,并且类似蛋白质含量的样品的玻璃度可能不同。最后,我们发现淀粉-颗粒的粘附力强烈影响抗张强度,而淀粉体积分数的影响主要出现在高界面​​粘附力上,硬质小麦籽粒就是这种情况。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Journal of food engineering》 |2016年第12期|40-47|共8页
  • 作者单位

    Univ Montpellier, Montpellier SupAgro, INRA, CIRAD,UMR IATE, F-34060 Montpellier, France;

    Univ Montpellier, Montpellier SupAgro, INRA, CIRAD,UMR IATE, F-34060 Montpellier, France;

    Univ Montpellier, CNRS, Lab Charles Coulomb, UMR 5221, 163 Rue Auguste Broussonnet, F-34090 Montpellier, France;

    Univ Montpellier, CNRS, LMGC UMR 5508, 163 Rue Auguste Broussonnet, F-34090 Montpellier, France|MIT, CNRS, DCEE, MSE2 UMI 3466, 77 Massachusetts Ave, Cambridge, MA 02139 USA;

    Univ Montpellier, CNRS, LMGC UMR 5508, 163 Rue Auguste Broussonnet, F-34090 Montpellier, France;

    Univ Montpellier, Montpellier SupAgro, INRA, CIRAD,UMR IATE, F-34060 Montpellier, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Wheat endosperm; Hardness; Vitreousness; Cemented granular material; Failure; Numerical modeling;

    机译:小麦胚乳;硬度;玻璃质;胶结粒状材料;破坏;数值模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号