首页> 外文期刊>Journal of Environmental Science and Health >Aerobic and anaerobic enrichment cultures highlight the pivotal role of facultative anaerobes in soil hydrocarbon degradation
【24h】

Aerobic and anaerobic enrichment cultures highlight the pivotal role of facultative anaerobes in soil hydrocarbon degradation

机译:有氧和厌氧的浓缩培养突出了伴随厌氧在土壤碳氢化合物降解中的关键作用

获取原文
获取原文并翻译 | 示例
           

摘要

Aliphatic and aromatic hydrocarbons are ubiquitous in the environment due to natural and anthropogenic processes. Under aerobic conditions hydrocarbons can be rapidly biodegraded but oxygenated environments often quickly become anaerobic when microbial respiration is coupled to contaminant oxidation. Most studies in literature usually focus on the initial microbial diversity of the hydrocarbon impacted environment and examine either aerobic or anaerobic conditions for enrichment. Hence, the aim of the present study was to enrich bacterial consortiums from two diesel impacted soil samples under both these conditions to assess the enrichment diversities and hydrocarbon degradation potentials. This would shed light upon how an environmental population shift would correlate to oxygen intrusion and depletion and still continue hydrocarbon degradation. Analysis of the 16S rRNA gene sequences showcases the different microbial populations that could emerge as the environmental factors change, resulting in different populations that are still capable of hydrocarbon degradation. Microbial diversity analysis also highlights the role of facultative anaerobic bacteria like Pseudomonas spp. and Citrobacter spp. in maintaining hydrocarbon degradation. This study shows that microorganisms capable of surviving under both oxic and anoxic (aerobic and anaerobic) conditions are the most crucial to the long term degradation of hydrocarbons in the environment.
机译:由于天然和人为工艺,脂族和芳烃在环境中普遍存在环境中。在有氧条件下,烃可以快速生物降解,但是当微生物呼吸与污染物氧化偶联时,含氧环境通常会迅速变得厌氧。大多数文学研究通常集中在碳氢化合物的初始微生物多样性上,并检查有氧或厌氧条件的富集。因此,本研究的目的是在这些条件下富集来自两种柴油的细菌联盟,这些条件是评估富集多样性和烃劣化潜力。这将阐明环境人口转变如何与氧气入侵和耗尽以及仍然继续碳氢化合物降解。 16S rRNA基因序列的分析显示,随着环境因素变化,可以出现的不同微生物群体,导致仍然能够碳氢化合物降解的不同群体。微生物多样性分析还突出了兼副厌氧细菌如假单胞菌SPP的作用。和柠檬杆菌spp。保持烃降解。本研究表明,能够在氧和缺氧(有氧和厌氧和厌氧)条件下能够存活的微生物是环境中烃的长期降解最为关键的。

著录项

  • 来源
    《Journal of Environmental Science and Health》 |2019年第6期|408-415|共8页
  • 作者单位

    Univ Free State Fac Nat & Agr Sci Dept Microbial Biochem & Food Biotechnol ZA-9300 Bloemfontein South Africa;

    Univ Free State Fac Nat & Agr Sci Dept Microbial Biochem & Food Biotechnol ZA-9300 Bloemfontein South Africa;

    Univ Free State Fac Nat & Agr Sci Dept Microbial Biochem & Food Biotechnol ZA-9300 Bloemfontein South Africa;

    iWATER Bloemfontein South Africa;

    Univ Free State Fac Nat & Agr Sci Dept Microbial Biochem & Food Biotechnol ZA-9300 Bloemfontein South Africa;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydrocarbons; biodegradation; soil; bioremediation; diesel; microbial diversity;

    机译:碳氢化合物;生物降解;土壤;生物修复;柴油;微生物多样性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号