首页> 外文期刊>Journal of Environmental Science and Health >Aerobic and anaerobic enrichment cultures highlight the pivotal role of facultative anaerobes in soil hydrocarbon degradation
【24h】

Aerobic and anaerobic enrichment cultures highlight the pivotal role of facultative anaerobes in soil hydrocarbon degradation

机译:有氧和厌氧菌培养强调了兼性厌氧菌在土壤碳氢化合物降解中的关键作用

获取原文
获取原文并翻译 | 示例
       

摘要

Aliphatic and aromatic hydrocarbons are ubiquitous in the environment due to natural and anthropogenic processes. Under aerobic conditions hydrocarbons can be rapidly biodegraded but oxygenated environments often quickly become anaerobic when microbial respiration is coupled to contaminant oxidation. Most studies in literature usually focus on the initial microbial diversity of the hydrocarbon impacted environment and examine either aerobic or anaerobic conditions for enrichment. Hence, the aim of the present study was to enrich bacterial consortiums from two diesel impacted soil samples under both these conditions to assess the enrichment diversities and hydrocarbon degradation potentials. This would shed light upon how an environmental population shift would correlate to oxygen intrusion and depletion and still continue hydrocarbon degradation. Analysis of the 16S rRNA gene sequences showcases the different microbial populations that could emerge as the environmental factors change, resulting in different populations that are still capable of hydrocarbon degradation. Microbial diversity analysis also highlights the role of facultative anaerobic bacteria like Pseudomonas spp. and Citrobacter spp. in maintaining hydrocarbon degradation. This study shows that microorganisms capable of surviving under both oxic and anoxic (aerobic and anaerobic) conditions are the most crucial to the long term degradation of hydrocarbons in the environment.
机译:由于自然和人为过程,脂肪烃和芳香烃在环境中无处不在。在有氧条件下,碳氢化合物可以快速生物降解,但是当微生物呼吸与污染物氧化耦合时,含氧环境通常会很快变为厌氧状态。文献中的大多数研究通常着眼于受烃影响的环境的初始微生物多样性,并研究有氧或厌氧条件下的富集情况。因此,本研究的目的是在这两种条件下,从两个受柴油影响的土壤样品中富集细菌群落,以评估富集多样性和碳氢化合物降解潜力。这将阐明环境人口的变化将如何与氧气的入侵和消耗相关联,并仍继续使烃类降解。对16S rRNA基因序列的分析表明,随着环境因素的变化,可能出现的微生物种群不同,从而导致仍然具有烃降解能力的不同种群。微生物多样性分析还强调了兼性厌氧细菌(如假单胞菌)的作用。和柠檬酸杆菌属。在维持烃降解方面。这项研究表明,能够在有氧和无氧(需氧和厌氧)条件下生存的微生物对于环境中碳氢化合物的长期降解最为关键。

著录项

  • 来源
    《Journal of Environmental Science and Health》 |2019年第6期|408-415|共8页
  • 作者单位

    Univ Free State, Fac Nat & Agr Sci, Dept Microbial Biochem & Food Biotechnol, ZA-9300 Bloemfontein, South Africa;

    Univ Free State, Fac Nat & Agr Sci, Dept Microbial Biochem & Food Biotechnol, ZA-9300 Bloemfontein, South Africa;

    Univ Free State, Fac Nat & Agr Sci, Dept Microbial Biochem & Food Biotechnol, ZA-9300 Bloemfontein, South Africa;

    iWATER, Bloemfontein, South Africa;

    Univ Free State, Fac Nat & Agr Sci, Dept Microbial Biochem & Food Biotechnol, ZA-9300 Bloemfontein, South Africa;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydrocarbons; biodegradation; soil; bioremediation; diesel; microbial diversity;

    机译:碳氢化合物;生物降解;土壤;生物修复;柴油;微生物多样性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号