首页> 外文期刊>Journal of enhanced heat transfer >MELTING WITHIN HORIZONTAL H-SHAPED ENCLOSURE WITH ADIABATIC CURVED BOUNDARY AFFECTED BY INCLINATION, MONO/HYBRID NANOFLUIDS AND FINS
【24h】

MELTING WITHIN HORIZONTAL H-SHAPED ENCLOSURE WITH ADIABATIC CURVED BOUNDARY AFFECTED BY INCLINATION, MONO/HYBRID NANOFLUIDS AND FINS

机译:水平H形外壳内熔化,其具有倾角影响的绝热弯曲边界,单可以/杂交纳米流体和鳍片

获取原文
获取原文并翻译 | 示例
           

摘要

From an energy saving viewpoint, full melting of phase change material in thermal storage systems should be achieved. Constrained ice melting with natural convection inside a horizontal H-shaped capsule with adiabatic curved sidewalls is not completed because energy input from hot surfaces overheats the liquid phase on top while stable thermal stratification on bottom persists. Although 90 degrees inclination of capsule engenders full melting of pure ice, the melting process is still sluggish due to low thermal conductivity of ice/water. Hence, heat transfer enhancement techniques using mono Cu, hybrid Ag/MgO nanoparticles, and 310 stainless steel fins are incorporated into system. Existing enthalpy-based lattice Boltzmann method with double distribution function model in single-phase framework is implemented. Insertion of Ag-MgO hybrid nanoparticles within horizontal H-shaped enclosure does not eradicate persistent thermal stratification. Full melting time inside 90 degrees inclined capsule is diminished 13.6 and 24.5%, respectively, when the volume fraction of hybrid nanoparticles is increased from 0.0 to 0.01 and 0.02. While mono Cu nanoparticles give a better thermal performance in contrast to Ag-MgO hybrid nanoparticles, their price is double. Lower volume fraction (0.01) of mono Cu nanoparticles is prescribed since storage capacity is less decreased. Compared to pure PCM melting, partial internal fins mounted on bottom hot surface diminish full melting time 28.0%. However, magnitude of maximum velocity in molten PCM demonstrates that existence of fins considerably limits growth of natural convection flow.
机译:从节能的观点来看,应达到热存储系统中相变材料的全面熔化。由于来自热表面的能量输入的电绝膜弯曲侧壁上的水平H形胶囊内的水平H形胶囊内部的自然对流熔化的约束冰熔化未完成,而底部稳定地稳定地热分层。虽然90度的胶囊倾斜度,但由于冰/水的低导热率,熔化过程仍然缓慢。因此,使用单克Cu,杂交Ag / mgO纳米粒子和310个不锈钢翅片的传热增强技术掺入系统中。实现了具有单相框中双分配函数模型的现有基于焓的晶格Boltzmann方法。在水平H形外壳内插入Ag-MgO混合纳米颗粒不会消除持续的热分层。当杂合纳米粒子的体积分数从0.0至0.02增加时,分别在90度倾斜胶囊内部的全熔化时间分别减少了13.6和24.5%。虽然单可以与Ag-MgO杂交纳米粒子相比,单克Cu纳米粒子具有更好的热性能,但它们的价格是双重的。规定了储存能力降低的较低体积级分(0.01)单克Cu纳米粒子。与纯PCM熔化相比,安装在底部热表面上的部分内部翅片减少了全熔化时间28.0%。然而,熔融PCM中的最大速度的大小表明翅片的存在显着限制了自然对流流的生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号