...
首页> 外文期刊>Journal of engineering materials and technology >Study of Ductile-to-Brittle Transition in Single Grit Diamond Scribing of Silicon: Application to Wire Sawing of Silicon Wafers
【24h】

Study of Ductile-to-Brittle Transition in Single Grit Diamond Scribing of Silicon: Application to Wire Sawing of Silicon Wafers

机译:硅单粒金刚石划片中韧性到脆性转变的研究:在硅片线切割中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The ductile-to-brittle cutting mode transition in single grit diamond scribing of mono-crystalline silicon is investigated in this paper. Specifically, the effects of scriber tip geometry, coefficient of friction, and external hydrostatic pressure on the critical depth of cut associated with ductile-to-brittle transition and crack generation are studied via an extended Finite Element Method (XFEM) based model, which is experimentally validated. Scribers with a large tip radius are shown to produce lower tensile stresses and a larger critical depth of cut compared with scribers with a sharp tip. Spherical tipped scribers are shown to generate only surface cracks, while sharp tipped scribers (conical, Berkovich and Vickers) are found to create large subsurface tensile stresses, which can lead to nucleation of subsurface median/lateral cracks. Lowering the friction coefficient tends to increase the critical depth of cut and hence the extent of ductile mode cutting. The results also show that larger critical depth of cut can be obtained under external hydrostatic pressure. This knowledge is expected to be useful in optimizing the design and application of the diamond coated wire employed in fixed abrasive diamond wire sawing of photovoltaic silicon wafers.
机译:本文研究了单晶硅单粒金刚石划片中的韧性至脆性切削模式转变。具体来说,通过基于扩展有限元方法(XFEM)的模型研究了划痕尖端的几何形状,摩擦系数和外部静水压力对与韧性到脆性转变和裂纹产生相关的临界切削深度的影响,该模型是经过实验验证。与具有锋利尖端的划线器相比,具有大尖端半径的划线器显示出较低的拉应力和较大的临界切削深度。球形尖头划线器仅产生表面裂纹,而尖头尖头划线器(圆锥形,Berkovich和Vickers)被发现会产生较大的地下张应力,从而可能导致地下正中/横向裂缝形核。降低摩擦系数往往会增加临界切削深度,从而增加延性模态切削的程度。结果还表明,在外部静水压力下可以获得更大的临界切削深度。预期该知识将有助于优化光伏硅晶片的固定磨料金刚石线锯中使用的金刚石涂覆线的设计和应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号