首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Thermoacoustic Modeling of a Gas Turbine Using Transfer Functions Measured Under Full Engine Pressure
【24h】

Thermoacoustic Modeling of a Gas Turbine Using Transfer Functions Measured Under Full Engine Pressure

机译:使用在全发动机压力下测量的传递函数对燃气轮机进行热声建模

获取原文
获取原文并翻译 | 示例
           

摘要

Thermoacoustic transfer functions of a full-scale gas turbine burner operating under full engine pressure have been measured. The excitation of the high-pressure test facility was done using a siren that modulated a part of the combustion airflow. Pulsation probes have been used to record the acoustic response of the system to this excitation. In addition, the flame's luminescence response was measured by multiple photomultiplier probes and a light spectrometer. Three techniques to obtain the thermoacoustic transfer function are proposed and employed: two acoustic-optical techniques and a purely acoustic technique. The first acoustical-optical technique uses one single optical signal capturing the chemiluminescence intensity of the flame as a measure for the heat release in the flame. This technique only works if heat release fluctuations in the flame have only one generic source, e.g., equivalence ratio or mass flow fluctuations. The second acoustic-optical technique makes use of the different response of the flame's luminescence at different optical wavelengths bands to acoustic excitation. It also works, if the heat release fluctuations have two contributions, e.g., equivalence ratio and mass flow fluctuation. For the purely acoustic technique, a new method was developed in order to obtain the flame transfer function, burner transfer function, and flame source term from only three pressure transducer signals. The purely acoustic method could be validated by the results obtained from the acoustic-optical techniques. The acoustic and acoustic-optical methods have been compared and a discussion on the benefits and limitations of each is given. The measured transfer functions have been implemented into a nonlinear, three-dimensional, time domain network model of a gas turbine with an annular combustion chamber. The predicted pulsation behavior shows a good agreement with pulsation measurements on a field gas turbine.
机译:已经测量了在全发动机压力下运行的大型燃气轮机燃烧器的热声传递函数。高压测试设备的激发是通过警报器完成的,该警报器调节了一部分燃烧气流。脉动探头已用于记录系统对此激励的声学响应。此外,火焰的发光响应是通过多个光电倍增管探头和一个光谱仪测量的。提出并采用了三种获得热声传递函数的技术:两种声光技术和一种纯声技术。第一种声光技术使用捕获火焰化学发光强度的单个光信号作为火焰中热量释放的量度。仅当火焰中的放热波动只有一个通用源(例如当量比或质量流量波动)时,此技术才有效。第二种声光技术利用了火焰在不同的光学波长带上的发光对声激发的不同响应。如果放热波动具有两个影响,例如当量比和质量流量波动,它也可以工作。对于纯声学技术,开发了一种新方法,以便仅从三个压力传感器信号获得火焰传递函数,燃烧器传递函数和火焰源项。可以通过从声光技术获得的结果来验证纯声方法。对声学和声学光学方法进行了比较,并对每种方法的优点和局限性进行了讨论。测得的传递函数已被实现为带有环形燃烧室的燃气轮机的非线性三维时域网络模型。预测的脉动行为与现场燃气轮机上的脉动测量值显示出良好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号