首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Computational Design of Corrosion-Resistant Fe-Cr-Ni-Al Nanocoatings for Power Generation
【24h】

Computational Design of Corrosion-Resistant Fe-Cr-Ni-Al Nanocoatings for Power Generation

机译:发电用耐腐蚀Fe-Cr-Ni-Al纳米涂层的计算设计

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A computational approach has been undertaken to design and assess potential Fe-Cr-Ni-Al systems to produce stable nanostructured corrosion-resistant coatings that form a protective, continuous scale of alumina or chromia at elevated temperatures. The phase diagram computation was modeled using the thermo-calc~? software and database (Thermo-Calc~? Software, 2007, THERMO-calc for Windows Version 4, Thermo-Calc Software AB, Stockholm, Sweden; Thermo-Calc~? Software, 2007, TCFE5, Version 5, Thermo-Calc Software AB, Stockholm, Sweden) to generate pseudoternary Fe-Cr-Ni-Al phase diagrams to help identify compositional ranges without the undesirable brittle phases. The computational modeling of the grain growth process, sintering of voids and interface toughness determination by indentation, assessed microstructural stability, and durability of the nanocoatings fabricated by a magnetron-sputtering process. Interdiffusion of Al, Cr, and Ni was performed using the DICTRA~? diffusion code (Thermo-Calc Software~?, DICTRA, Version 24, 2007, Version 25, 2008, Thermo-Calc Software AB, Stockholm, Sweden) to maximize the long-term stability of the nanocoatings. The computational results identified a new series of Fe-Cr-Ni-Al coatings that maintain long-term stability and a fine-grained microstructure at elevated temperatures. The formation of brittle cr-phase in Fe-Cr-Ni-Al alloys is suppressed for Al contents in excess of 4 wt %. The grain growth modeling indicated that the columnar-grained structure with a high percentage of low-angle grain boundaries is resistant to grain growth. Sintering modeling indicated that the initial relative density of as-processed magnetron-sputtered coatings could achieve full density after a short thermal exposure or heat-treatment. The interface toughness computation indicated that the Fe-Cr-Ni-Al nanocoatings exhibit high interface toughness in the range of 52-366 J/m~2. The interdiffusion modeling using the DICTRA software package indicated that inward diffusion could result in substantial to moderate Al and Cr losses from the nanocoating to the substrate during long-term thermal exposures.
机译:已经采取了一种计算方法来设计和评估潜在的Fe-Cr-Ni-Al系统,以生产稳定的纳米结构耐腐蚀涂层,该涂层在高温下形成氧化铝,氧化铬的保护性连续鳞片。相图的计算是使用thermo-calc建模的。软件和数据库(Thermo-Calc〜?软件,2007,用于Windows版本4的THERMO-calc,Thermo-Calc Software AB,斯德哥尔摩,瑞典; Thermo-Calc〜?软件,2007,TCFE5,版本5,Thermo-Calc Software AB (斯德哥尔摩,瑞典)生成伪三元Fe-Cr-Ni-Al相图,以帮助确定成分范围,而不会出现不希望的脆性相。晶粒生长过程的计算模型,空隙的烧结和通过压痕确定界面韧性,评估的微结构稳定性以及通过磁控溅射工艺制造的纳米涂层的耐久性。 Al,Cr和Ni的相互扩散是使用DICTRA?扩散代码(Thermo-Calc Software〜?,DICTRA,版本24,2007,版本25,2008,Thermo-Calc Software AB,斯德哥尔摩,瑞典)可最大程度地提高纳米涂层的长期稳定性。计算结果确定了一系列新的Fe-Cr-Ni-Al涂层,这些涂层在高温下可保持长期稳定性和细晶粒组织。当Al含量超过4wt%时,抑制了Fe-Cr-Ni-Al合金中脆性Cr相的形成。晶粒长大模型表明,具有高百分比的低角度晶界的柱状晶粒组织对晶粒长大具有抵抗力。烧结模型表明,经过短时间的热暴露或热处理后,加工后的磁控溅射涂层的初始相对密度可以达到全密度。界面韧性的计算表明,Fe-Cr-Ni-Al纳米涂层表现出较高的界面韧性,范围为52-366 J / m〜2。使用DICTRA软件包进行的相互扩散模型表明,向内扩散可能会导致在长期热暴露期间从纳米涂层到基材的大量Al和Cr损失到中等程度。

著录项

  • 来源
    《Journal of Engineering for Gas Turbines and Power》 |2010年第5期|p.052101.1-052101.9|共9页
  • 作者单位

    Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238;

    Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238;

    Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238;

    Electric Power Research Institute, Charlotte, NC 28262;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号