...
首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Mechanism of Upward Fuel Discharge During Core Disruptive Accidents in Sodium-Cooled Fast Reactors
【24h】

Mechanism of Upward Fuel Discharge During Core Disruptive Accidents in Sodium-Cooled Fast Reactors

机译:钠冷快堆堆芯破坏事故中的向上燃料排放机理

获取原文
获取原文并翻译 | 示例
           

摘要

The elimination of severe power excursion during core disruptive accidents is a key issue for the enhanced safety of sodium-cooled fast reactors. In order to prevent the formation of a large-scale molten fuel pool within a reactor core, which is one of the factors leading to the severe power excursion, the Japan Atomic Energy Agency (JAEA) is considering the introduction of fuel assembly with inner duct structure (FAIDUS). In the current reference design for FAIDUS, the top end of the inner duct is open, whereas the bottom end is closed, and therefore it is expected that the molten fuel will be discharged from the reactor core towards the upper sodium plenum through the inner duct. The objective of the present study is to clarify the fundamental mechanism for upward fuel discharge through the inner duct structure, and thereby to confirm the effectiveness of FAIDUS. The possibility of upward discharge of a high-density melt driven by coolant vapor has been confirmed by the IAEA's experiment, in which molten Wood's metal simulating the molten fuel was injected into a coolant channel (equivalent inner diameter: 30 mm, total height: 2 m, fluid content: water) simulating the inner duct structure. In this paper, the mechanism of upward discharge of a high-density melt driven by coolant vapor pressure and/or flow in this experiment is discussed in terms of the application to reactor conditions. Through this discussion, the following mechanisms were clarified. (1) Coolant vapor pressure is built up within the coolant channel after the melt injection. The magnitude of the pressure buildup becomes larger with the increase of melt-enthalpy-injection rate, which is defined by the product of melt-mass-injection rate into the coolant channel and melt specific enthalpy. (2) Following the pressure buildup, the melt is discharged upward, being driven by the coolant vapor flow directing towards the top opening end of the coolant channel. The upward discharge mass rate becomes higher with the increase of the magnitude of the pressure buildup and, therefore, the melt-enthalpy-injection rate. The experimental knowledge obtained from the JAEA's experiment suggests that the coolant pressure buildup could act as one of the driving forces for the upward discharge of a high-density melt through the inner duct structure in FAIDUS under reactor conditions with higher melt-enthalpy-injection rate than the current simulant experimental condition.
机译:在堆芯破坏性事故中消除严重的动力偏移是提高钠冷快堆安全性的关键问题。为了防止在堆芯内形成大规模的熔融燃料池,这是导致严重功率偏移的因素之一,日本原子能机构(JAEA)正在考虑引入带有内部管道的燃料组件结构(FAIDUS)。在FAIDUS的当前参考设计中,内管的顶端是敞开的,而底端是闭合的,因此,预计熔融燃料将通过内管从反应堆堆芯向上部钠气室排放。 。本研究的目的是阐明通过内部管道结构向上排出燃料的基本机理,从而确认FAIDUS的有效性。 IAEA的实验已经证实了由冷却剂蒸气驱动的高密度熔体向上排放的可能性,其中将模拟熔融燃料的熔融木材金属注入了冷却剂通道(等效内径:30 mm,总高度:2 m,流体含量:水)模拟内部管道结构。在本文中,根据在反应堆条件上的应用,讨论了在本实验中由冷却剂蒸汽压力和/或流动驱动的高密度熔体向上排出的机理。通过讨论,阐明了以下机制。 (1)熔体注入后,冷却液通道内会形成冷却液蒸气压。随着熔体-熔体注入速率的增加,压力累积的大小变得更大,熔体-熔体注入速率由进入冷却剂通道的熔体-质量注入速率和熔体比焓的乘积所定义。 (2)随着压力的增加,熔体向上流动,并被冷却剂蒸气流带动,该冷却剂蒸气流朝向冷却剂通道的顶部开口端。向上的排出质量率随着压力累积量的增加而增加,因此,随着熔体焓注入率的增加而增加。从日本原子能机构的实验中获得的实验知识表明,在反应堆条件下,熔体-焓-注入率较高时,冷却剂压力的累积可能是高密度熔体向上通过FAIDUS内部管道结构排出的驱动力之一。而不是目前的模拟实验条件。

著录项

  • 来源
    《Journal of Engineering for Gas Turbines and Power》 |2013年第3期|032901.1-032901.9|共9页
  • 作者单位

    Advanced Nuclear System Research and Development Directorate,Japan Atomic Energy Agency,Oarai, Ibaraki, 311-1393, Japan;

    Advanced Nuclear System Research and Development Directorate,Japan Atomic Energy Agency,Oarai, Ibaraki, 311-1393, Japan;

    Advanced Nuclear System Research and Development Directorate,Japan Atomic Energy Agency,Oarai, Ibaraki, 311-1393, Japan;

    Advanced Nuclear System Research and Development Directorate,Japan Atomic Energy Agency,Oarai, Ibaraki, 311-1393, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号