首页> 外文会议>International conference on nuclear engineering;ASME power conference >MECHANISM OF UPWARD FUEL DISCHARGE DURING CORE DISRUPTIVE ACCIDENT IN SODIUM-COOLED FAST REACTORS
【24h】

MECHANISM OF UPWARD FUEL DISCHARGE DURING CORE DISRUPTIVE ACCIDENT IN SODIUM-COOLED FAST REACTORS

机译:钠冷快速反应器中核扩散事故中的向上燃料释放机理

获取原文

摘要

The elimination of severe power excursion with significant mechanical-energy release during Core Disruptive Accidents (CDAs) is a key issue for the enhanced safety of Sodium-cooled Fast Reactors (SFRs). In order to prevent the formation of a large-scale molten fuel pool within a reactor core, which is one of factors leading to the severe power excursion during CDAs, Japan Atomic Energy Agency (JAEA) is studying the introduction of Fuel Assembly with Inner Duct Structure (FAIDUS). In the current reference design for FAIDUS, the top end of the inner duct is open whereas the bottom end of the inner duct is closed, and therefore it is expected that the molten fuel will be discharged from a reactor core towards an upper sodium plenum through the inner duct. The objective of the present study is to clarify the fundamental mechanism for upward fuel discharge through the inner duct structure in FAIDUS, and thereby to confirm the effectiveness of FAIDUS. In the previous paper, the possibility of upward discharge of a high-density melt driven by coolant vapor was confirmed by visual observation in the JAEA's out-of-pile experiment, in which molten Wood's metal (density at the room temperature: 8700 kg/m3, melting point: 352 K) simulating the molten fuel was injected into a coolant channel (equivalent inner diameter: 30 mm, total height: 2 m, fluid content: water) simulating the inner duct structure. In this paper, the mechanism of upward discharge of a high-density melt driven by coolant vapor pressure and/or flow in this experiment is discussed in terms of the application to reactor conditions. Through this discussion, the following mechanisms were clarified. 1) Coolant vapor pressure is built up within the coolant channel after the melt injection. The magnitude of the pressure buildup becomes larger with increase of melt-enthalpy-injection rate which is defined by the product of melt-mass-injection rate into the coolant channel and melt specific enthalpy. 2) Following the pressure buildup, the melt is discharged upward being driven by the coolant vapor flow directing towards the top opening end of the coolant channel. The upward discharge mass rate becomes higher with the increase of the magnitude of the pressure buildup and therefore melt-enthalpy-injection rate. From these experimental knowledge, it was suggested that the coolant pressure buildup could act as one of the driving force for the upward discharge of a high-density melt through the inner duct structure in FAIDUS under reactor conditions with higher melt-enthalpy-injection rate than the current experimental condition.
机译:消除堆芯破坏性事故(CDA)期间产生的大量机械能的严重功率偏移是提高钠冷快堆(SFR)安全性的关键问题。为了防止在反应堆堆芯内形成大规模的熔融燃料池,这是导致CDA期间严重功率偏移的因素之一,日本原子能机构(JAEA)正在研究引入带有内导管的燃料组件结构(FAIDUS)。在FAIDUS的当前参考设计中,内部管道的顶端是敞开的,而内部管道的底端是封闭的,因此,预计熔融燃料将从反应堆堆芯通过上方的钠气室排出内管。本研究的目的是阐明通过FAIDUS内部管道结构向上排出燃料的基本机理,从而确认FAIDUS的有效性。在先前的论文中,通过JAEA的堆外实验的目视观察证实了由冷却剂蒸气驱动的高密度熔体向上排放的可能性,在该实验中,熔融的木质金属(室温下的密度为8700 kg / m3,熔点:352 K),模拟熔融燃料被注入到模拟内部管道结构的冷却剂通道(等效内径:30 mm,总高度:2 m,流体含量:水)中。在本文中,根据在反应堆条件中的应用,讨论了在本实验中由冷却剂蒸汽压力和/或流动驱动的高密度熔体向上排出的机理。通过讨论,阐明了以下机制。 1)注入熔体后,冷却剂通道内会形成冷却剂蒸气压。随着熔体-熔体注入速率的增加,压力累积的大小变得更大,熔体-熔体注入速率由进入冷却剂通道的熔体-质量注入速率与熔体比焓的乘积所定义。 2)随着压力的增加,熔体被冷却剂蒸气流驱使向上排出,该冷却剂蒸气流朝向冷却剂通道的顶部开口端引导。向上的排出质量率随着压力累积量的增加而增加,并因此随着熔体-焓-注入率的增加而增加。根据这些实验知识,提出在反应堆条件下,熔体焓注入速率比FAIDUS高的熔体压力通过FAIDUS内部管道结构向上排出,成为向上驱动高密度熔体向上排放的驱动力之一。当前的实验条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号