首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Impact of Piping Impedance and Acoustic Characteristics on Centrifugal Compressor Surge and Operating Range
【24h】

Impact of Piping Impedance and Acoustic Characteristics on Centrifugal Compressor Surge and Operating Range

机译:管道阻抗和声学特性对离心压缩机喘振和工作范围的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The performance of a centrifugal compressor is usually defined by its head versus flow map, limited by the surge and stall regions. This map is critical to assess the operating range of a compressor for both steady state and transient system scenarios. However, the compressor map does not provide a complete picture on how the compressor will respond to rapid transient inputs and how its surge behavior is affected by these events. Specifically, the response of the compressor to rapid transient events such as single or multiple (periodic) pressure pulses, is also a function of the compressor's upstream and downstream piping system's acoustic response and impedance characteristics. This unique response phenomenon was first described in the 1970s and came to be known as the "compressor dynamic response (CDR) theory." CDR theory explains how pulsations are amplified or reduced by a compression system's acoustic response characteristic superimposed on the compressor head-flow map. Although the CDR theory explained the impact of the nearby piping system on the compressor surge and pulsation amplification, it provided only limited usefulness as a quantitative analysis tool, mainly due to the lack of computational numerical tools available at the time. To fully analyze pulsating flows in complex centrifugal compressor suction and discharge header piping systems, the principles of the CDR theory should be implemented in a dynamic flow model to quantify the magnitude of the amplifications of pressure pulses near the surge region. When designing centrifugal compressor stations within a transmission piping system, it is critically important to have a full understanding of the impact of the station's piping system on compressor dynamic behavior. For example, if a compressor system's piping impedance amplifies the suction side pulsations, the compressor's operating range will be severely limited and will produce unacceptable discharge piping vibrations. Whereas it is usually desirable to limit the downstream volume between the compressor discharge and the check valve to reduce the potential for transient surge events, a small discharge volume results in high piping impedance. This will amplify pressure pulsations passing through the compressor. The small downstream volume provides limited ability for any transient peak (such as a pressure pulse) passing through the compressor to be absorbed quickly, and an amplified discharge pressure spike will be the result. Also, if any periodic-pressure excitation from upstream vortex shedding or any other continuously varying flow disturbance couples with a pipe resonance length, the result can be high fluctuations of the compressor operating point on its speed line, effectively resulting in a reduced operating range and higher than expected surge margin (surge line moves to the right). Both acoustic resonance and system impedance are functions of pipe friction, pipe and header interface connections, valve/elbow locations, pipe diameter, and valve coefficients, i.e., the entire piping system connected to the compressor. Thus, a careful acoustic and impedance design review of a compressor station design should be performed to avoid impacting the operating range of the machine. This paper describes the methodology of such a design review using modern pulsation analysis software. Examples and parametric studies are presented that demonstrate the impact of system impedance and piping acoustics on the dynamic operating response of the compressor in a typical compressor station. Some recommendations to reduce the risk of pulsation amplification and unsteady operation are also provided.
机译:离心压缩机的性能通常由其扬程与流量图定义,并受喘振和失速区域的限制。该图对于评估压缩机在稳态和瞬态系统情况下的工作范围都是至关重要的。但是,压缩机图并未提供有关压缩机将如何响应快速瞬态输入以及这些事件如何影响其喘振行为的完整描述。具体而言,压缩机对快速瞬态事件(例如单个或多个(周期性)压力脉冲)的响应也是压缩机上游和下游管道系统的声学响应和阻抗特性的函数。这种独特的响应现象在1970年代首次被描述,并被称为“压缩机动态响应(CDR)理论”。 CDR理论解释了如何通过叠加在压缩机头流图上的压缩系统的声学响应特性来放大或减少脉动。尽管CDR理论解释了附近管道系统对压缩机喘振和脉动放大的影响,但它作为定量分析工具的用途有限,主要是由于当时缺乏可用的计算数值工具。为了全面分析复杂的离心压缩机吸气和排气总管系统中的脉动流,应在动态流模型中实施CDR理论的原理,以量化喘振区域附近压力脉冲的放大幅度。在传输管道系统中设计离心式压缩机站时,至关重要的是,全面了解站的管道系统对压缩机动态行为的影响。例如,如果压缩机系统的管道阻抗放大了吸入侧的脉动,则压缩机的工作范围将受到严格限制,并会产生不可接受的排放管道振动。尽管通常希望限制压缩机排气口和止回阀之间的下游容积以减少发生瞬态喘振事件的可能性,但较小的排气口容积会导致较高的管道阻抗。这将放大通过压缩机的压力脉动。较小的下游容积为通过压缩机的任何瞬态峰值(例如压力脉冲)迅速吸收提供了有限的能力,并且将导致放大的排气压力峰值。同样,如果上游涡流脱落引起的任何周期性压力激励或任何其他连续变化的流动扰动与管道共振长度耦合在一起,则结果可能是压缩机运行点在其速度线上的高波动,有效地导致了运行范围的减小和高于预期的喘振裕度(喘振线向右移动)。声共振和系统阻抗都是管道摩擦,管道和集管接口连接,阀门/弯头位置,管道直径和阀门系数(即连接到压缩机的整个管道系统)的函数。因此,应对压缩机站的设计进行仔细的声学和阻抗设计审查,以免影响机器的工作范围。本文介绍了使用现代脉动分析软件进行此类设计审查的方法。实例和参数研究表明了系统阻抗和管道声学特性对典型压缩机站中压缩机动态运行响应的影响。还提供了一些减少脉动放大和不稳​​定运行风险的建议。

著录项

  • 来源
    《Journal of Engineering for Gas Turbines and Power》 |2015年第3期|032603.1-032603.9|共9页
  • 作者单位

    Southwest Research Institute,Machinery Program,6220 Culebra Road,San Antonio, TX 78238;

    Apache, Inc.,Gas Monetization Department,2000 Post Oak Boulevard, Suite 100,Houston, TX 77056;

    Solar Turbines, Inc.,Systems Analysis,9330 Skypark Court,San Diego, CA 92123;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号