首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Aeroacoustic Analysis of Low-Speed Axial Fans With Different Rotational Speeds in the Design Point
【24h】

Aeroacoustic Analysis of Low-Speed Axial Fans With Different Rotational Speeds in the Design Point

机译:设计点上不同转速的低速轴流风机的空气声学分析

获取原文
获取原文并翻译 | 示例
           

摘要

One of the main design decisions in the development of low-speed axial fans is the right choice of the blade loading versus rotational speed, since a target pressure rise could either be achieved with a slow spinning fan and high blade loading or a fast spinning fan with less flow turning in the blade passages. Both the blade loading and the fan speed have an influence on the fan performance and the fan acoustics, and there is a need to find the optimum choice in order to maximize efficiency while minimizing noise emissions. This paper addresses this problem by investigating five different fans with the same pressure rise but different rotational speeds in the design point (DP). In the first part of the numerical study, the fan design is described and steady-state Reynolds-averaged Navier–Stokes (RANS) simulations are conducted in order to identify the performance of the fans in the DP and in off-design conditions. The investigations show the existence of an optimum in rotational speed regarding fan efficiency and identify a flow separation on the hub causing a deflection of the outflow in radial direction as the main loss source for slow spinning fans with high blade loadings. Subsequently, large eddy simulations (LES) along with the acoustic analogy of Ffowcs Williams and Hawkings (FW–H) are performed in the DP to identify the main noise sources and to determine the far-field acoustics. The identification of the noise sources within the fans in the near-field is performed with the help of the power spectral density (PSD) of the pressure. In the far-field, the sound power level (SWL) is computed using different parts of the fan surface as FW–H sources. Both methods show the same trends regarding noise emissions and allow for a localization of the noise sources. The flow separation on the hub is one of the main noise sources along with the tip vortex with an increase in its strength toward lower rotational speeds and higher loading. Furthermore, a horseshoe vortex detaching from the rotor leading edge and impinging on the pressure side as well as the turbulent boundary layer on the suction side represent significant noise sources. In the present investigation, the maximum in efficiency coincides with the minimum in noise emissions.
机译:在低速轴流风机开发中的主要设计决策之一是正确选择叶片载荷与转速,因为目标转速的升高可以通过慢速旋转风扇和高叶片载荷或快速旋转风扇来实现。叶片通道中的流量减少。叶片负载和风扇速度都会影响风扇性能和风扇声学,因此需要找到最佳选择,以便在使噪音最小化的同时最大化效率。本文通过研究在设计点(DP)中具有相同压力上升但转速不同的五个不同风扇来解决此问题。在数值研究的第一部分中,描述了风扇设计,并进行了稳态雷诺平均Navier-Stokes(RANS)仿真,以识别风扇在DP和非设计条件下的性能。研究表明,存在关于风扇效率的最佳转速,并确定了导致径向偏斜的轮毂上的流分离,这是叶片负荷较高的慢速旋转风扇的主要损耗源。随后,在DP中执行大型涡流模拟(LES)以及Ffowcs Williams和Hawkings(FW–H)的声学模拟,以识别主要噪声源并确定远场声学。借助压力的功率谱密度(PSD)进行近场风扇内噪声源的识别。在远场中,使用风扇表面的不同部分作为FW–H源来计算声功率级(SWL)。两种方法在噪声排放方面都显示出相同的趋势,并且可以对噪声源进行定位。轮毂上的气流分离是主要的噪声源之一,随着尖端涡流强度的增加,其朝向较低的旋转速度和较高的载荷逐渐增大。此外,从转子前缘分离并撞击在压力侧的马蹄涡流以及在吸力侧的湍流边界层是重要的噪声源。在本研究中,效率的最大值与噪声的排放量最小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号