首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Development of an Efficient Conjugate Heat Transfer Modeling Framework to Optimize Mixing-Limited Combustion of Ethanol in a Diesel Engine
【24h】

Development of an Efficient Conjugate Heat Transfer Modeling Framework to Optimize Mixing-Limited Combustion of Ethanol in a Diesel Engine

机译:高效共轭传热建模框架的研制优化柴油机乙醇混合限制燃烧

获取原文
获取原文并翻译 | 示例
           

摘要

Mixing controlled combustion of alcohol fuels has been identified as a promising technology based on their low propensity for paniculate and NOx production, but the higher heats of vaporization and auto-ignition temperatures of these fuels make their direct use in diesel engine architectures a challenge. To realize the potential of alcohol-fueled combustion, a computational fluid dynamics (CFD) modeling framework is developed, validated, and exercised to identify designs that maximize engine thermal efficiency. To evaluate the use of thermal barrier coatings (TBCs), a simplified one-dimensional (1D) conjugate heat transfer (CHT) modeling framework is employed. The addition of the 1D CHT model only increases the computational expense by 15% relative to traditional approaches, yet offers more accurate heat transfer predictions over constant temperature boundary conditions. The validated model is then used to explore a range of injector orientations and piston bowl geometries. Using a design of experiments (DoE) approach, several designs were identified that improved fuel-air mixing, shortened the combustion duration, and increased thermal efficiency. The most promising design was fabricated and tested in a Caterpillar 1Y3700 single-cylinder oil test engine (SCOTE). Engine testing confirmed the findings from the CFD simulations and found that the co-optimized injector and piston bowl design yielded over 2-percentage point increase in thermal efficiency at the same equivalence ratio (0.96) and over 6-percentage point increase at the same engine load (10.1 bar indicated mean effective pressure (IMEP)), while satisfying design constraints for peak pressure and maximum pressure rise rate.
机译:含酒精燃料的混合控制燃烧已被确定为基于它们的胰腺和NOx生产的低倾向,但这些燃料的汽化和自动点火温度的较高热量使其直接用在柴油机架构挑战。为了实现酒精燃料燃烧的潜力,开发,验证,验证,验证,验证和行使计算流体动力学(CFD)建模框架,以识别最大化发动机热效率的设计。为了评估热阻挡涂层(TBC)的使用,采用简化的一维(1D)共轭传热(CHT)建模框架。添加1D CHT模型的添加仅通过相对于传统方法增加15%的计算费用,但在恒定温度边界条件下提供更准确的传热预测。然后,验证的模型用于探索一系列喷射器取向和活塞碗几何形状。使用实验(DOE)方法的设计,鉴定了几种设计,改善燃料 - 空气混合,缩短燃烧持续时间,并提高了热效率。最有前途的设计是在毛毛虫1Y3700单缸油测试引擎(SCOTE)中进行制造和测试。发动机测试证实了CFD仿真的发现,发现共同优化的喷射器和活塞碗设计在相同的等效比(0.96)中产生了2百分点的热效率,并且在同一发动机上增加了6百分点负载(10.1条表示平均有效压力(IMEP)),同时满足峰值压力和最大压力升高速率的设计约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号