首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >A High-Fidelity Modeling Tool to Support the Design of Oxy-Combustors for Direct-Fired Supercritical CO_2 Cycles
【24h】

A High-Fidelity Modeling Tool to Support the Design of Oxy-Combustors for Direct-Fired Supercritical CO_2 Cycles

机译:一种高保真建模工具,支持用于直接烧制超临界CO_2循环的氧燃烧器设计

获取原文
获取原文并翻译 | 示例
           

摘要

The challenge in the design of oxy-combustors for direct-fired supercritical CO_2 (sCO_2) cycles is in addressing disparate performance metrics and objectives. Key design parameters to consider include, among others, injector design for mixing and flame stability, split of recycled CO_2 diluent between injectors and cooling films, target flame temperatures to control noncondensable products, and strategies to inject the diluent CO_2 for film cooling and thermal control. In order to support novel oxy-combustor designs, a high-fidelity yet numerically efficient modeling framework based on the CRUNCH CFD® flow solver is presented, featuring key physics-based submodels relevant in this regime. For computational efficiency in modeling large kinetic sets, a flamelet/progress variable (FPV) based tabulated-chemistry approach is utilized featuring a three-stream extension to allow for the simulation of the CO_2 film cooling stream in addition to the fuel and oxi-dizer streams. Finite rate chemistry effects are modeled in terms of multiple progress variables for the primary flame as well as for slower-evolving chemical species such as NO_x and SO_x contaminants. Real fluid effects are modeled using advanced equations of states. The predictive capabilities of this computationally tractable design support tool are demonstrated on a conceptual injector design for an oxy-combustor operating near 30MPa. Simulations results provide quantitative feedback on the effectiveness of the film cooling as well as the level of contaminants (CO, NO, and N) in the exhaust due to impurities entering from the injectors. These results indicate that this framework would be a useful tool for refining and optimizing the oxy-combustor designs as well as risk mitigation analyses.
机译:用于直接烧制超临界CO_2(SCO_2)循环的氧气燃烧器设计中的挑战是解决了不同的性能指标和目标。要考虑的关键设计参数包括用于混合和火焰稳定性的注射器设计,在喷射器和冷却膜之间的再循环CO_2稀释剂的分离,靶火焰温度以控制不可调味的产品,以及注入薄膜冷却和热控制的抗稀释剂CO_2的策略。为了支持新型氧燃烧器设计,提出了一种高保真且数值有效的基于CRUNCD®流求解器的模型框架,其中包括在该制度中相关的基于基于物理的子模型。为了计算大型动力学集的计算效率,利用了基于阵列/进展变量(FPV)的制表 - 化学方法,其特征在于三流延伸,以允许除燃料和氧化氧化率外,还允许模拟CO_2膜冷却流溪流。有限速率化学效应在主要火焰的多个进度变量方面是模拟的,以及较慢演化的化学物质,如NO_X和SO_X污染物。使用状态的高级方程式建模实际流体效应。在30MPa附近操作的氧燃烧器的概念喷射器设计上证明了这种计算易旧设计支持工具的预测能力。仿真结果提供了对薄膜冷却的有效性以及由于进入喷射器进入的杂质而有效的定量反馈以及排气中的污染物(CO,NO和N)的水平。这些结果表明,该框架将是用于精炼和优化氧气燃烧器设计以及风险缓解分析的有用工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号