...
首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Multi-Objective Modeling of Leading-Edge Serrations Applied to Low-Pressure Axial Fans
【24h】

Multi-Objective Modeling of Leading-Edge Serrations Applied to Low-Pressure Axial Fans

机译:应用于低压轴向风扇的前缘锯齿的多目标型号

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A novel modeling strategy is proposed which allows high-accuracy predictions of aerodynamic and aeroacoustic target values for a low-pressure axial fan, equipped with serrated leading edges. Inspired by machine learning processes, the sampling of the experimental space is realized by use of a Latin hypercube design plus a factorial design, providing highly diverse information on the analyzed system. The effects of four influencing parameters (IP) are tested, characterizing the inflow conditions as well as the serration geometry. A total of 65 target values in the time and frequency domains are defined and can be approximated with high accuracy by individual artificial neural networks. Furthermore, the validation of the model against fully independent test points within the experimental space yields a remarkable fit, even for the spectral distribution in 1/3-octave bands, proving the ability of the model to generalize. A metaheuristic multi-objective optimization approach provides two-dimensional Pareto optimal solutions for selected pairs of target values. This is particularly important for reconciling opposing trends, such as the noise reduction capability and aerodynamic performance. The chosen optimization strategy also allows for a customized design of serrated leading edges, tailored to the specific operating conditions of the axial fan.
机译:提出了一种新颖的建模策略,其允许具有锯齿状前缘的低压轴向风扇的空气动力学和气动靶值的高精度预测。通过机器学习过程的启发,通过使用拉丁超立体设计以及各种设计来实现实验空间的采样,提供有关分析系统的高度多样化的信息。测试了四个影响参数(IP)的效果,表征了流入条件以及锯齿几何形状。定义了时间和频域中的总共65个目标值,并且可以通过各个人工神经网络高精度地近似。此外,在实验空间内的全独立测试点对模型的验证产生了显着的拟合,即使对于1/3倍频波段中的光谱分布,证明了模型概括的能力。成面型多目标优化方法为选定的目标值提供二维帕累托最佳解决方案。这对于协调反对趋势尤为重要,例如降噪能力和空气动力学性能。所选择的优化策略还允许定制的锯齿状前缘设计,该边缘定制到轴向风扇的特定操作条件。

著录项

  • 来源
    《Journal of Engineering for Gas Turbines and Power》 |2020年第11期|111009.1-111009.13|共13页
  • 作者单位

    Faculty of Mechanical and Process Engineering Institute of Sound and Vibration Engineering ISAVE University of Applied Sciences Duesseldorf Duesseldorf 40476 Germany;

    Centre of Innovative Energy Systems ZIES Faculty of Mechanical and Process Engineering University of Applied Sciences Duesseldorf Duesseldorf 40476 Germany;

    Faculty of Mechanical Engineering and Transport Systems Institute of Fluid Dynamics and Technical Acoustics ISTA Technical University of Berlin Berlin 10623 Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号