首页> 外文期刊>Journal of Energy Storage >Transient phase change heat transfer in a metal foam-phase change material heatsink subject to a pulse heat flux
【24h】

Transient phase change heat transfer in a metal foam-phase change material heatsink subject to a pulse heat flux

机译:金属泡沫相变材料中的瞬态相位变化热传递散热器经受脉冲热通量的影响

获取原文
获取原文并翻译 | 示例
       

摘要

In the present study, the effect of using a layer of metal foam in a composite metal foam - phase change heatsink is addressed. The bottom of the heatsink is subjected to a pulse heat flux, while the top of the heatsink is exposed to an external cooling convective flow. The melting/solidification of the Phase Change Materials (PCMs) is modeled using the enthalpy porosity approach. The partial differential equations governing the natural con-vective flow and the heat transfer in the clear flow region and porous layers of the heatsink are introduced and transformed into a non-dimensional form using non-dimensional variables. The Finite Element Method (FEM) with an automatic time-step and grid adaptation is employed to solve the governing equations. The model and the numerical code are validated by comparison to several results obtained in recent works available in the literature. The effect of the surrounding heat transfer by convection and the fusion temperature of the PCM on the heatsink performance and on the phase change behavior is investigated. The results show that melting heat transfer occurs during the activation of the pulse heat flux while the solidification commences with a small delay after the pulse heat flux turns off. The heatsink presents a major benefit when the external cooling power is weak. Moreover, a heatsink with a lower fusion temperature shows a better cooling efficiency. The presence of a metal foam layer notably improves the cooling efficiency of the heatsink. However, the location of the porous layer shows a minimal effect on the heatsink efficiency.
机译:在本研究中,解决了在复合金属泡沫相变散热器中使用一层金属泡沫的效果。散热器的底部经受脉冲热通量,而散热器的顶部暴露于外部冷却对流流程。使用焓孔隙率接近建模相变材料(PCMS)的熔化/凝固。用非尺寸变量将控制自然环型流动和透明流动区域和散热器的多孔层中的传热和传热的部分微分方程引入并转化为非尺寸形式。采用具有自动时间步骤和网格自适应的有限元方法(FEM)来解决控制方程。通过比较文献中可用的最近作品中获得的若干结果,验证了该模型和数值代码。研究了通过对流的周围传热的影响和PCM对散热性能和相变行为的熔化温度。结果表明,在脉冲热通量的激活期间发生熔融传热,而脉冲热通量关闭后凝固在较小的延迟。当外部冷却功率弱时,散热器呈现主要益处。此外,具有较低熔化温度的散热器显示出更好的冷却效率。金属泡沫层的存在显着提高了散热器的冷却效率。然而,多孔层的位置显示了对散热效率的最小影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号