首页> 外文期刊>Journal of Energy Resources Technology >Extending 'Assessment of Tesla Turbine Performance' Model for Sensitivity-Focused Experimental Design
【24h】

Extending 'Assessment of Tesla Turbine Performance' Model for Sensitivity-Focused Experimental Design

机译:扩展“特斯拉涡轮性能评估”模型,以灵敏度为重点的实验设计

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The analytical model of Carey is extended and clarified for modeling Tesla turbine performance. The extended model retains differentiability, making it useful for rapid evaluation of engineering design decisions. Several clarifications are provided including a quantitative limitation on the model’s Reynolds number range; a derivation for output shaft torque and power that shows a match to the axial Euler Turbine Equation; eliminating the possibility of tangential disk velocity exceeding inlet working fluid velocity; and introducing a geometric nozzle height parameter. While nozzle geometry is limited to a slot providing identical flow velocity to each channel, variable nozzle height enables this velocity to be controlled by the turbine designer as the flow need not be choked. To illustrate the utility of this improvement, a numerical study of turbine performance with respect to variable nozzle height is provided. Since the extended model is differentiable, power sensitivity to design parameters can be quickly evaluated—a feature important when the main design goal is maximizing measurement sensitivity. The derivatives indicate two important results. First, the derivative of power with respect to Reynolds number for a turbine in the practical design range remains nearly constant over the whole laminar operating range. So, for a given working fluid mass flow rate, Tesla turbine power output is equally sensitive to variation in working fluid physical properties. Second, turbine power sensitivity increases as wetted disk area decreases; there is a design trade-off here between maximizing power output and maximizing power sensitivity.
机译:扩展并阐明了Carey的分析模型,用于对Tesla涡轮机性能进行建模。扩展模型保留了可区分性,使其可用于快速评估工程设计决策。提供了一些说明,包括对模型雷诺数范围的定量限制;输出轴扭矩和功率的推导与轴向欧拉涡轮方程匹配;消除切线盘速度超过入口工作流体速度的可能性;并引入几何喷嘴高度参数。尽管喷嘴的几何形状仅限于为每个通道提供相同流速的槽,但可变的喷嘴高度使该速度可以由涡轮设计人员控制,因为不需要阻流。为了说明此改进的效用,提供了有关可变喷嘴高度的涡轮机性能的数值研究。由于扩展模型是可区分的,因此可以快速评估对设计参数的功率敏感性,这是主要设计目标是最大化测量敏感性时的一项重要功能。导数表明两个重要结果。首先,在实际设计范围内,相对于雷诺数的功率导数在整个层流运行范围内几乎保持恒定。因此,对于给定的工作流体质量流量,特斯拉涡轮功率输出对工作流体物理特性的变化同样敏感。第二,随着湿盘面积的减小,涡轮机的功率灵敏度会增加。在最大化功率输出和最大化功率灵敏度之间需要进行设计折衷。

著录项

  • 来源
    《Journal of Energy Resources Technology》 |2018年第3期|032005.1-032005.7|共7页
  • 作者单位

    Engineer Inc,4832 NW 76th Rd,Gainesville, FL 32653;

    Mechanical and ManufacturingEngineering Department,Tennessee State University,3500 John A. Merritt Blvd,Nashville, TN 37209-1561;

    Mechanical and ManufacturingEngineering Department,Tennessee State University,3500 John A. Merritt Blvd,Nashville, TN 37209-1561;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Turbines; Fluids; Nozzles; Disks; Flow (Dynamics); Reynolds number;

    机译:涡轮;流体;喷嘴;圆盘;流量(动力学);雷诺数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号