首页> 外文期刊>Journal of Energy Resources Technology >A Model of Multiphase Flow Dynamics Considering the Hydrated Bubble Behaviors and Its Application to Deepwater Kick Simulation
【24h】

A Model of Multiphase Flow Dynamics Considering the Hydrated Bubble Behaviors and Its Application to Deepwater Kick Simulation

机译:考虑水化气泡行为的多相流动力学模型及其在深水反冲模拟中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

The interaction between hydrated bubble growth and multiphase flow dynamics is important in deepwater wellbore/pipeline flow. In this study, we derived a hydrate shell growth model considering the intrinsic kinetics, mass and heat transfer, and hydrodynamics mechanisms in which a partly coverage assumption is introduced for elucidating the synergy of bubble hydrodynamics and hydrate morphology. Moreover, a hydro-thermo-hydrate model is developed considering the intercoupling effects including interphase mass and heat transfer, and the slippage of hydrate-coated bubble. Through comparison with experimental data, the performance of proposed model is validated and evaluated. The model is applied to analyze the wellbore dynamics process of kick evolution during deepwater drilling. The simulation results show that the hydrate formation region is mainly near the seafloor affected by the fluid temperature and pressure distributions along the wellbore. The volume change and the mass transfer rate of a hydrated bubble vary complicatedly, because of hydrate formation, hydrate decomposition, and bubble dissolution (both gas and hydrate). Moreover, hydrate phase transition can significantly alter the void fraction and migration velocity of free gas in two aspects: (1) when gas enters the hydrate stability field (HSF), a solid hydrate shell will form on the gas bubble surface, and thereby, the velocity and void fraction of free gas can be considerably decreased; (2) the free gas will separate from solid hydrate and expand rapidly near the sea surface (outside the HSF), which can lead to an abrupt hydrostatic pressure loss and explosive development of the gas kick.
机译:在深水井筒/管道流动中,水合气泡生长与多相流动动力学之间的相互作用很重要。在这项研究中,我们导出了一个水合物壳生长模型,其中考虑了内在动力学,传质和传热以及水动力学机理,其中引入了部分覆盖假设以阐明气泡水动力学和水合物形态的协同作用。此外,考虑了相间质量和传热之间的耦合效应,以及水合物包裹的气泡的滑移,建立了水热-水合物模型。通过与实验数据的比较,对所提出模型的性能进行了验证和评估。该模型用于分析深水钻井过程中井壁突跳的井眼动力学过程。模拟结果表明,水合物的形成区域主要位于海床附近,受沿井眼的流体温度和压力分布的影响。由于水合物的形成,水合物的分解和气泡的溶解(气体和水合物),水合气泡的体积变化和传质速率变化复杂。此外,水合物相变可在两个方面显着改变自由气体的空隙率和迁移速度:(1)当气体进入水合物稳定性场(HSF)时,会在气泡表面形成固体水合物壳,因此,自由气体的速度和空隙率可以大大降低; (2)游离气体将从固体水合物中分离出来,并在海面附近(HSF外)迅速膨胀,这可能导致突然的静水压力损失和瓦斯涌动的爆炸性发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号