首页> 外文期刊>Journal of Electronic Packaging >Comparative Study of the Dissolution Kinetics of Electrolytic Ni and Electroless NiP Layers by Molten Sn3.5Ag Solder Alloy
【24h】

Comparative Study of the Dissolution Kinetics of Electrolytic Ni and Electroless NiP Layers by Molten Sn3.5Ag Solder Alloy

机译:Sn3.5Ag熔锡合金对电解Ni和化学NiP层溶解动力学的比较研究

获取原文
获取原文并翻译 | 示例
           

摘要

Sn-based, Pb-free solders with high a Sn content and high melting temperature often cause excessive interfacial reactions at interfaces. Sn-3.5Ag solder alloy has been used to identify its interfacial reactions with two-metal layer flexile substrates. In this paper the dissolution kinetics of Sn3.5Ag solder on the electrolytic Ni and electroless NiP layer are investigated. It is found that during 1 min reflow the electrolytic Ni layer dissolves much less than the electroless NiP layer due to the formation of Ni{sub}3Sn and Ni{sub}3Sn{sub}2 intermetallic compounds (IMCs) on the electrolytic Ni layer. The faster nucleation of Ni{sub}3Sn{sub}4 IMC on the NiP layer is proposed as the main reason for the higher initial dissolution rate of the electroless NiP layer. A P-rich Ni layer is formed underneath the Ni{sub}3Sn{sub}4 IMC due to the solder-assisted reactions. This P-rich Ni layer acts as a good diffusion barrier layer, which decreases the dissolution rate of the NiP layer as compared to that of the Ni layer, but weakens the interface of solder joints and reduces the ball shear load and reliability. Below a certain thickness, the P-rich Ni layer breaks and an increase in the diffusion of Sn atoms through the fractured P-rich Ni layer occurs that increases the growth rate of IMCs again, and thus the dissolution rate of the NiP layer becomes higher again than for the Ni layer. It is found that a 3 μm thick NiP layer cannot protect the Cu layer for more than 120 min reflow at 250℃. An electrolytic Ni/solder system has a relatively higher shear load, a lower dissolution rate of the Ni layer, and is more protective for the Cu layer during extended times of reflow.
机译:高锡含量和高熔化温度的锡基无铅焊料通常会在界面处引起过度的界面反应。 Sn-3.5Ag焊料合金已被用于鉴定其与两层金属柔性基板的界面反应。本文研究了Sn3.5Ag焊料在电解Ni和化学NiP层上的溶解动力学。发现在1分钟的回流期间,由于在电解Ni层上形成了Ni {sub} 3Sn和Ni {sub} 3Sn {sub} 2金属间化合物(IMC),电解Ni层的溶解度比化学NiP层要少得多。 。提出Ni {sub} 3Sn {sub} 4 IMC在NiP层上更快的成核是化学镀NiP层较高初始溶解速率的主要原因。由于焊料辅助反应,在Ni {sub} 3Sn {sub} 4 IMC下方形成了富P的Ni层。该富P的Ni层用作良好的扩散阻挡层,与Ni层相比,其降低了NiP层的溶解速率,但是削弱了焊点的界面并降低了球剪切负荷和可靠性。在一定厚度以下,富P的Ni层破裂,通过断裂的富P的Ni层发生Sn原子扩散的增加​​,这再次增加了IMC的生长速率,因此NiP层的溶解速率变高再次比镍层。发现在250℃回流120分钟以上,厚度为3μm的NiP层不能保护Cu层。电解镍/焊料体系具有相对较高的剪切负荷,较低的镍层溶解速率,并且在延长的回流时间内对铜层更具保护性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号