首页> 外文期刊>Journal of Electronic Packaging >Direct Concentration Approach of Moisture Diffusion and Whole-Field Vapor Pressure Modeling for Reflow Process-Part I: Theory and Numerical Implementation
【24h】

Direct Concentration Approach of Moisture Diffusion and Whole-Field Vapor Pressure Modeling for Reflow Process-Part I: Theory and Numerical Implementation

机译:回流过程中水分扩散的直接浓缩方法和全场蒸汽压模型-第一部分:理论和数值实现

获取原文
获取原文并翻译 | 示例
           

摘要

Moisture concentration is discontinuous at interfaces when two materials, which have different saturated moisture concentrations, are joined together. In order to perform moisture diffusion modeling in a multimaterial system such as electronic packages, normalization methods have been commonly used to remove the discontinuity of moisture concentration at interfaces. However, such treatments cannot be extended to a reflow process, in which ambient temperature and/or humidity vary with time. This paper develops a direct concentration approach, with which the moisture concentration is used as a field variable directly. Constraint equations are applied to meet the interface continuity requirements. Further in this paper, a simplified vapor pressure model based on a mul-tiscale analysis is developed. The model considers the phase change in moisture, and links the macroscopic moisture concentration to the moisture state at a microscopic level. This model yields the exact same results with the original vapor pressure model (Fan, et al., 2005, "A Micromechanics Based Vapor Pressure Model in Electronic Packages," ASME J. Electron. Packag., 127(3), pp. 262-267). The new model does not need to relate to a reference temperature state. Numerical implementation procedures for calculating moisture concentration and ensuing vapor pressure, which are coupled with temperature analysis, are presented in this paper.
机译:当两种具有不同饱和水分浓度的材料连接在一起时,水分浓度在界面处是不连续的。为了在诸如电子封装的多材料系统中执行水分扩散建模,通常使用归一化方法来消除界面处水分浓度的不连续性。但是,这种处理不能扩展到回流过程,在该过程中环境温度和/或湿度会随时间变化。本文提出了一种直接浓缩法,该方法直接将水分浓度用作现场变量。应用约束方程式以满足界面连续性要求。此外,本文还建立了基于多尺度分析的简化蒸气压模型。该模型考虑了水分的相变,并将宏观水分浓度与微观水平的水分状态联系起来。该模型产生与原始蒸气压模型完全相同的结果(Fan等,2005,“电子封装中基于微力学的蒸气压模型”,ASME J. Electron。Packag。,第127(3)页,第262页)。 -267)。新模型不需要与参考温度状态相关。本文介绍了计算水分浓度和产生蒸气压的数值实现程序,并结合温度分析。

著录项

  • 来源
    《Journal of Electronic Packaging》 |2009年第3期|031010.1-031010.7|共7页
  • 作者单位

    Advanced Electronic Manufacturing Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;

    Department of Mechanical Engineering, P. O. Box 10028, Lamar University, Beaumont, TX 77710 Department of Engineering Mechanics, South China University of Technology, Guangzhou 510640, China;

    Hong Kong Applied Science and Technology Research Institute, 2 Science Park East Avenue, Shatin, Hong Kong;

    Advanced Electronic Manufacturing Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    direct concentration approach (DCA); moisture diffusion; vapor pressure; reflow; electronic package; multiscale analysis;

    机译:直接集中法(DCA);水分扩散蒸汽压力;回流电子包装;多尺度分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号