首页> 外文期刊>Journal of Electronic Packaging >Thermal Modeling of Microfluidic Channels for Cooling High Power Resistors on Multilayer Organic Liquid Crystal Polymer Substrate
【24h】

Thermal Modeling of Microfluidic Channels for Cooling High Power Resistors on Multilayer Organic Liquid Crystal Polymer Substrate

机译:多层有机液晶聚合物基板上用于冷却大功率电阻器的微流体通道的热模型

获取原文
获取原文并翻译 | 示例
           

摘要

Thermal management is an important aspect for any packaging technology incorporating high power devices. In this paper, we present an integrated microfluidic cooling solution for high power surface mount thin film resistors on liquid crystal polymer (LCP) substrate. High power resistors are mounted on top of a 50.8 μm (2 mil) LCP layer, a coolant can circulate, thanks to a micropump, inside a Duroid micromachined channel beneath the LCP layer in order to take away the generated heat. A thermal model is combined from existing thermal models in literature to predict the overall thermal resistance of the organic heat sink in the case of a moving coolant inside the microfluidic channel. Four sets of microfluidic channels with different thicknesses are fabricated and tested. Temperature measurements of resistors with different power ratings and sizes on top of these channels agree with the model predictions and the simulations in the case of static (non-moving) and dynamic (moving) distilled (DI) water. With this integrated solution, the case temperature of the 40 W resistor, which is mounted on the 254 μm (10 mil) micro-channel, can be cooled down to 121℃ at room temperature while the resistor is dissipating 23.2 W of power;this resistor fails to operate beyond 13.3 W in the absence of fluid circulation. This is, to the best of our knowledge, the best thermal cooling performance ever achieved on multilayer organic substrates.
机译:对于任何包含大功率器件的封装技术,热管理都是重要的方面。在本文中,我们为液晶聚合物(LCP)基板上的高功率表面贴装薄膜电阻器提供了一种集成的微流体冷却解决方案。大功率电阻器安装在50.8μm(2 mil)LCP层的顶部,由于有微型泵,冷却剂可以在LCP层下方的Duroid微加工通道内循环,以带走产生的热量。将热模型与文献中现有的热模型相结合,以预测在微流体通道内移动冷却剂时有机散热器的整体热阻。制作并测试了四组具有不同厚度的微流体通道。在这些通道顶部具有不同额定功率和大小的电阻器的温度测量结果与模型预测和静态(非移动)蒸馏水和动态(移动)蒸馏水(DI)的仿真结果一致。通过这种集成解决方案,可以将安装在254μm(10密耳)微通道上的40 W电阻的外壳温度在室温下冷却至121℃,同时消耗23.2 W的功率;在没有流体循环的情况下,电阻无法工作超过13.3W。据我们所知,这是有史以来在多层有机基板上实现的最佳热冷却性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号