首页> 外文期刊>Journal of Electronic Packaging >Creep Constitutive Models Suitable for Solder Alloys in Electronic Assemblies
【24h】

Creep Constitutive Models Suitable for Solder Alloys in Electronic Assemblies

机译:适用于电子组件中焊料合金的蠕变本构模型

获取原文
获取原文并翻译 | 示例
           

摘要

Most solders used in electronic systems have low-melting temperature and hence experience significant amount of creep deformation throughout their life-cycle because typical operational and test conditions represent high homologous temperature. Phenomenologi-cal and mechanistic models used in the literature for predicting creep response of both bulk and grain scale specimens are reviewed in this paper. The phenomenological models reviewed in this paper are based on purely empirical observations of the creep deformation behavior or derived from qualitative interpretation of the underlying microscale mechanisms. These models have some intrinsic disadvantages since they do not have explicit mechanistic dependence on microstructural features. Therefore, the constitutive relations derived using the above models are difficult to extrapolate beyond the test conditions. This paper also reviews how some of the above limitations can be mitigated by using mechanistic or microstructurally motivated models. Mechanistic models are capable of estimating the material creep response based on the detailed physics of the underlying mechanisms and microstructure. The microstructure and constitutive response of the most popular family of lead-free solders, namely, SnAgCu (SAC) solders, are significantly different from those of previously used eutectic Sn37Pb solder. The creep deformation in Sn37Pb solder occurs primarily through diffusion-assisted grain-boundary sliding. In SAC solder joints, dislocation-based creep deformation mechanisms such as glide, climb, detachment, and cross-slip appear to be the dominant mechanisms in coarse-grained joints. Mechanistic creep models are therefore based on the deformation mechanisms listed above.
机译:电子系统中使用的大多数焊料具有较低的熔化温度,因此在整个生命周期中都会经历大量的蠕变变形,因为典型的操作和测试条件代表着较高的同源温度。本文综述了用于预测块状和颗粒状标本蠕变响应的文献学和力学模型。本文所审查的现象学模型是基于对蠕变变形行为的纯经验观察得出的,或者是基于对潜在微观尺度机理的定性解释得出的。这些模型具有一些固有的缺点,因为它们对微观结构特征没有明确的机械依赖性。因此,使用上述模型得出的本构关系很难在测试条件之外进行推断。本文还回顾了如何通过使用机械模型或微观结构模型来减轻上述限制。力学模型能够基于潜在机理和微观结构的详细物理原理来估算材料的蠕变响应。最流行的无铅焊料系列,即SnAgCu(SAC)焊料的微观结构和本构响应与以前使用的共晶Sn37Pb焊料明显不同。 Sn37Pb焊料的蠕变主要通过扩散辅助的晶界滑动发生。在SAC焊点中,基于位错的蠕变变形机制(例如滑行,爬升,分离和交叉滑动)似乎是粗粒接点中的主要机制。因此,机械蠕变模型基于上面列出的变形机制。

著录项

  • 来源
    《Journal of Electronic Packaging》 |2016年第3期|030801.1-030801.13|共13页
  • 作者单位

    Department of Mechanical Engineering, University of Maryland, College Park, MD 20742;

    Department of Reliability Engineering, University of Maryland, College Park, MD 20742;

    Department of Mechanical Engineering, University of Maryland, College Park, MD 20742;

    Department of Reliability Engineering, University of Maryland, College Park, MD 20742;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号