首页> 外文期刊>Journal of Electronic Packaging >High-Temperature Interfacial Adhesion Strength Measurement in Electronic Packaging Using the Double Cantilever Beam Method
【24h】

High-Temperature Interfacial Adhesion Strength Measurement in Electronic Packaging Using the Double Cantilever Beam Method

机译:使用双悬臂梁法的电子包装高温界面粘附强度测量

获取原文
获取原文并翻译 | 示例
           

摘要

This paper describes the use of the double cantilever beam (DCB) method for characterizing the adhesion strength of interfaces in advanced microelectronic packages at room and high temperatures. Those interfaces include silicon-epoxy underfill, solder resist-epoxy underfill and epoxy mold compounds (EMCs), and die passivation materials-epoxy underfill materials. A unique sample preparation technique was developed for DCB testing of each interface in order to avoid the testing challenges specific to that interface-for example, silicon cracking and voiding in silicon-underfill samples and cracking of solder resist films in solder resist-underfill samples. An asymmetric DCB configuration (i.e., different cantilever beam thickness on top compared to the bottom) was found to be more effective in maintaining the crack at the interface of interest and in reducing the occurrence of cohesive cracking when compared to symmetric DCB samples. Furthermore, in order to characterize the adhesion strength of those interfaces at elevated temperatures seen during package assembly and end-user testing, an environmental chamber was designed and fabricated to rapidly and uniformly heat the DCB samples for testing at high temperatures. This chamber was used to successfully measure the adhesion strength of silicon-epoxy underfill samples at temperatures up to 260 °C, which is the typical maximum temperature experienced by electronic packages during solder reflow. For the epoxy underfills tested in this study, the DCB samples failed cohesively within the underfill at room temperature but started failing adhesively at temperatures near 150 °C. Adhesion strength measurements also showed a clear degradation with temperature. Several other case studies using DCB for material selection and assembly process optimization are also discussed. Finally, fractography results of the fractured surfaces are presented for better understanding of the failure mode.
机译:本文介绍了双悬臂梁(DCB)方法的用途,用于在室温和高温下表征高级微电子包装中界面的粘合强度。这些界面包括硅 - 环氧底部填充物,抗蚀剂 - 环氧底部填充物和环氧树脂化合物(EMC),以及模具钝化材料 - 环氧底部填充材料。为每个界面的DCB测试开发了一种独特的样品制备技术,以避免对该界面特异的测试挑战 - 例如,硅基底部填充样品中的硅开裂和空隙,以及阻焊抗蚀剂底部填充样品中的阻焊膜的破裂。发现不对称的DCB配置(即,与底部相比的顶部的不同的悬臂梁厚度)在与对称DCB样品相比,在感兴趣的界面处保持裂纹和减少粘性裂缝的发生时更有效。此外,为了表征封装组件和最终用户测试期间看到的升高温度下的那些界面的粘合强度,设计并制造了迅速且均匀地加热DCB样品以在高温下进行测试。该腔室用于成功测量硅 - 环氧底部填充样品在高达260°C的温度下的粘合强度,这是焊料回流期间电子包装经历的典型最大温度。对于在本研究中测试的环氧底部填充物中,DCB样品在室温下在底部填充物中粘合地粘合,但在​​150℃附近的温度下开始粘附。粘合强度测量还显示出透明的降解温度。还讨论了使用DCB进行材料选择和装配过程优化的其他几种案例研究。最后,提出了骨折表面的Fractography结果以更好地了解失效模式。

著录项

  • 来源
    《Journal of Electronic Packaging》 |2017年第2期|020902.1-020902.11|共11页
  • 作者单位

    Intel Corporation 5000 West Chandler Boulevard Mail Stop: CH5-157 Chandler A2 85226;

    Department of Mechanical Engineering The University of Texas at El Paso 500 West University Avenue El Paso TX 79968;

    Intel Corporation 5000 West Chandler Boulevard Mail Stop: CH5-157 Chandler AZ 85226;

    Department of Mechanical Engineering Arizona State University P. O. Box 875802 Tempe AZ 85287;

    Intel Corporation 5000 West Chandler Boulevard Mail Stop: CH5-157 Chandler AZ 85226;

    Intel Corporation 5000 West Chandler Boulevard Mail Stop: CH5-157 Chandler AZ 85226;

    Intel Corporation 5000 West Chandler Boulevard Mail Stop: CH5-157 Chandler AZ 85226;

    Intel Corporation 5000 West Chandler Boulevard Mail Stop: CH5-157 Chandler AZ 85226;

    Intel Corporation 5000 West Chandler Boulevard Mail Stop: CH5-157 Chandler AZ 85226;

    Intel Corporation 5000 West Chandler Boulevard Mail Stop: CH5-157 Chandler AZ 85226;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号