...
首页> 外文期刊>Journal of Crystal Growth >Geometric modeling of homoepitaxial CVD diamond growth: I. The {100}{111}{110}{113} system
【24h】

Geometric modeling of homoepitaxial CVD diamond growth: I. The {100}{111}{110}{113} system

机译:同质外延CVD金刚石生长的几何模型:I. {100} {111} {110} {113}系统

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Plasma-assisted CVD homoepitaxial diamond growth is a process that must satisfy many stringent requirements to meet industrial applications, particularly in high-power electronics. Purity control and crystalline quality of the obtained samples are of paramount importance and their optimization is a subject of active research. In the process of such studies, we have obtained high purity CVD diamond monocrystals with unusual morphologies, namely with apparent {113} stable faces. This phenomenon has led us to examine the process of CVD diamond growth and build up a 3D geometrical model, presented here, describing the film growth as a function of time. The model has been able to successfully describe the morphology of our obtained crystals and can be used as a predictive tool to predetermine the shape and size of a diamond crystal grown in a given process configuration. This renders accessible control of desirable properties such as largest usable diamond surface area and/or film thickness, before the cutting and polishing manufacture steps take place. The two latter steps are more sensitive to the geometry of the growth sectors, which will be addressed in a companion paper. Our model, applicable to the growth of any cubic lattice material, establishes a complete mapping of the final morphology state of growing diamond, as a function of the growth rates of the crystalline planes considered, namely {100}, {111}, {110}, and {113} planes, all of which have been observed experimentally in diamond films. The model makes no claim as to the stability of the obtained faces, such as the occurrence of non-epitaxial crystallites or twinning. It is also possible to deduce transient behavior of the crystal morphology as growth time is increased. The model conclusions are presented in the form of a series of diagrams, which trace the existence (and dominance) boundaries of each face type, in presence of the others, and where each boundary crossing represent a topology change in terms of number of faces, edges and vertices. We validate the model by matching it against crystals published in the literature and illustrate its predictive value by suggesting ways to increase usable surface area of the diamond film.
机译:等离子体辅助CVD同质外延金刚石生长是必须满足许多严格要求才能满足工业应用(特别是在大功率电子设备中)的过程。所获得样品的纯度控制和晶体质量至关重要,其优化是积极研究的主题。在这样的研​​究过程中,我们获得了具有不同形态的高纯度CVD金刚石单晶,即具有明显的{113}稳定面。这种现象使我们检查了CVD金刚石的生长过程,并建立了一个3D几何模型(在此介绍),将3D几何模型描述为时间的函数。该模型已经能够成功描述我们获得的晶体的形态,并且可以用作预测工具,以确定在给定的工艺配置中生长的金刚石晶体的形状和大小。在进行切割和抛光制造步骤之前,这使得可以方便地控制所需特性,例如最大的可用金刚石表面积和/或膜厚度。后两个步骤对增长部门的几何形状更为敏感,这将在随附的论文中解决。我们的模型适用于任何立方晶格材料的生长,它根据所考虑的晶面的生长速率(即{100},{111},{110)建立了正在生长的钻石的最终形态状态的完整映射。 }和{113}平面,所有这些都已在金刚石薄膜中进行了实验观察。该模型不要求获得的面的稳定性,例如非外延微晶或孪晶的出现。随着生长时间的增加,还可以推断晶体形态的瞬态行为。模型结论以一系列图表的形式呈现,这些图表追踪每种面孔类型在存在其他面孔时的存在(和支配)边界,其中每个边界交叉代表面孔数量的拓扑变化,边和顶点。我们通过将其与文献中发表的晶体进行匹配来验证该模型,并通过提出增加钻石膜可用表面积的方法来说明其预测价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号