首页> 外文期刊>Journal of Crystal Growth >Interface layer control and optimization of InAs/GaSb type-Ⅱ superlattices grown by molecular beam epitaxy
【24h】

Interface layer control and optimization of InAs/GaSb type-Ⅱ superlattices grown by molecular beam epitaxy

机译:分子束外延生长InAs / GaSbⅡ型超晶格的界面层控制及优化

获取原文
获取原文并翻译 | 示例
       

摘要

We reported in the paper the optimization and control of InSb interface properties during molecular beam epitaxy growth of InAs/GaSb superlattice structures. Samples with identical structure but different growth approaches, conventional molecular beam epitaxy (MBE) and migration-enhanced epitaxy (MEE), for interface layers were first prepared and their structural, morphological and optical properties were compared. The MEE samples had significant higher As composition in InSb interface layers and higher luminescence efficiency. Samples with different InSb interface layer thickness were then prepared. By changing the interface layer thickness, one can effectively tune the lattice mismatch and photoluminescence peak wavelength. Though X-ray diffraction satellite peak linewidth and surface roughness of the grown samples changed little, the one with smallest negative lattice mismatch showed the highest luminescence efficiency. Finally a P-I-N superlattice detector structure was grown with controlled interfaces. The full width at half maximum (FWHM) of the lst-order X-ray diffraction satellite peak of the absorption layers was only 19". The detector structure showed a cutoff wavelength of 6.3 μm at 77 K. The dark current density at -50 mV bias was 4.3 × 10~(-5) A/cm~2 and the peak detectivity was 4.2 × 10~(11) cm Hz~(1/2)/W.
机译:我们在论文中报道了InAs / GaSb超晶格结构的分子束外延生长过程中InSb界面性能的优化和控制。首先制备了具有相同结构但生长方法不同,常规分子束外延(MBE)和迁移增强外延(MEE)的界面层样品,并比较了它们的结构,形态和光学性质。 MEE样品在InSb界面层中具有显着较高的As组成和较高的发光效率。然后制备具有不同InSb界面层厚度的样品。通过改变界面层的厚度,可以有效地调整晶格失配和光致发光峰值波长。尽管生长样品的X射线衍射卫星峰线宽和表面粗糙度变化不大,但负晶格失配最小的样品显示出最高的发光效率。最终,具有受控界面的P-I-N超晶格探测器结构得以生长。吸收层的一阶X射线衍射卫星峰的半峰全宽(FWHM)只有19“。探测器结构在77 K处的截止波长为6.3μm。在-50时的暗电流密度mV偏压为4.3×10〜(-5)A / cm〜2,峰值检测率为4.2×10〜(11)cm Hz〜(1/2)/ W。

著录项

  • 来源
    《Journal of Crystal Growth》 |2014年第15期|220-225|共6页
  • 作者单位

    Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China;

    Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China;

    Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China;

    Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China;

    Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China;

    Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    A1. Interfaces; A3. Migration-enhanced epitaxy; A3. Molecular beam epitaxy; B2. InAs/GaSb superlattices;

    机译:A1。接口;A3。迁移增强外延;A3。分子束外延;B2。 InAs / GaSb超晶格;
  • 入库时间 2022-08-17 13:14:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号