首页> 外文期刊>Journal of Contaminant Hydrology >Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model
【24h】

Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

机译:基因组规模的微生物计算机模型与地下水反应性运输模型的直接耦合

获取原文
获取原文并翻译 | 示例
           

摘要

The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The modeling system is designed in such a way that constraint-based models targeting different microorganisms or competing organism communities can be easily plugged into the system. Constraint-based modeling is very costly given the size of a genome-scale reaction network. To save computation time, a binary tree is traversed to examine the concentration and solution pool generated during the simulation in order to decide whether the constraint-based model should be called. We also show preliminary results from the integrated model including a comparison of the direct and indirect coupling approaches and evaluated the ability of the approach to simulate field experiment.
机译:微生物的活性通常在地下污染物的动态自然衰减或工程生物修复中起重要作用,这些污染物包括氯化溶剂,金属和放射性核素。为了评估和/或设计生物修复系统,需要定量反应转运模型。最先进的反应性运输模型通常会忽略微生物的影响,或者在模拟条件下以静态增长的产量和恒定的反应速率参数来模拟微生物的影响,而实际上微生物可以动态地改变其功能(例如利用其他呼吸途径) )以应对环境条件的时空变化。利用基因组数据和多途径反应网络,基于约束的基因组规模的微生物计算机模型已被证明能够模拟某些经过充分研究的微生物的瞬时代谢,并能够识别不同条件下的生长速率,底物吸收速率和副产物速率生长条件。可以确定这些速率,并使用局部地球化学条件作为约束条件来代替反应性运输模型中特定的微生物介导的反应速率。我们之前展示了将基于约束的微生物代谢模型与反应性运输模拟器相集成的潜在效用,该模型可用于地下水中铀的生物修复。但是,这项工作依赖于一种间接耦合方法,这种方法对于最初的论证是有效的,但可能无法扩展到更重要的更复杂的问题上(例如,微生物物种群落和多个约束变量)。在这里,我们通过展示和演示将反应性运输模型(FORTRAN代码)与使用IBM ILOG CPLEX线性优化器基础系统(C库)解决的基于约束的计算机模型直接集成的方法来扩展这项工作。这些模型已与语言互操作性工具BABEL集成在一起。建模系统的设计方式使得可以轻松地将针对不同微生物或竞争性生物群落的基于约束的模型插入系统。考虑到基因组规模的反应网络的规模,基于约束的建模非常昂贵。为了节省计算时间,遍历二叉树以检查在模拟过程中生成的浓度和溶液池,以便确定是否应调用基于约束的模型。我们还显示了集成模型的初步结果,包括直接和间接耦合方法的比较,并评估了该方法模拟现场实验的能力。

著录项

  • 来源
    《Journal of Contaminant Hydrology》 |2011年第4期|p.96-103|共8页
  • 作者单位

    Pacific Northwest National Laboratory, PO Box 999, MS K9-36, Richland, WA, USA;

    Pacific Northwest National Laboratory, PO Box 999, MS K9-36, Richland, WA, USA;

    Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada;

    Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada;

    Pacific Northwest National Laboratory, PO Box 999, MS K9-36, Richland, WA, USA;

    Department of Microbiology, University of Massachusetts, Amherst, MA, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    bioremediation; constraint-based; genome-scale; reactive transport; babel; cplex;

    机译:生物修复;基于约束;基因组规模;反应性运输;贝贝;复杂;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号