首页> 外文期刊>Journal of Contaminant Hydrology >Laboratory SIP signatures associated with oxidation of disseminated metal sulfides
【24h】

Laboratory SIP signatures associated with oxidation of disseminated metal sulfides

机译:与弥散性金属硫化物的氧化有关的实验室SIP签名

获取原文
获取原文并翻译 | 示例
       

摘要

Oxidation of metal sulfide minerals is responsible for the generation of acidic waters rich in sulfate and metals. When associated with the oxidation of sulfide ore mine waste deposits the resulting pore water is called acid mine drainage (AMD); AMD is a known environmental problem that affects surface and ground waters. Characterization of oxidation processes in-situ is challenging, particularly at the Field scale. Geophysical techniques, spectral induced polarization (SIP) in particular, may provide a means of such investigation. We performed laboratory experiments to assess the sensitivity of the SIP method to the oxidation mechanisms of common sulfide minerals found in mine waste deposits, i.e.. pyrite and pyrrhotite, when the primary oxidant agent is dissolved oxygen. We found that SIP parameters, e.g., phase shift, the imaginary component of electrical conductivity and total changeability, decrease as the time of exposure to oxidation and oxidation degree increase. This observation suggests that dissolution-depletion of the mineral surface reduces the capacitive properties and polarizability of the sulfide minerals. However, small increases in the phase shift and imaginary conductivity do occur during oxidation. These transient increases appear to correlate with increases of soluble oxidizing products, e.g., Fe~(2+) and Fe~(3+) in solution; precipitation of secondary minerals and the formation of a passivating layer to oxidation coating the mineral surface may also contribute to these increases. In contrast, the real component of electrical conductivity associated with electrolytic, electronic and interfacial conductance is sensitive to changes in the pore fluid chemistry as a result of the soluble oxidation products released (Fe~(2+) and Fe~(3+)), particularly for the case of pyrrhotite minerals.
机译:金属硫化物矿物的氧化是产生富含硫酸盐和金属的酸性水的原因。当与硫化矿矿石废物的氧化有关时,所产生的孔隙水称为酸性矿井排水(AMD); AMD是一个已知的环境问题,会影响地表水和地下水。原位氧化过程的表征具有挑战性,特别是在现场规模上。地球物理技术,特别是光谱感应极化(SIP),可以提供这种调查的手段。我们进行了实验室实验,以评估当主要氧化剂为溶解氧时,SIP方法对矿山废物矿床中的常见硫化物矿物(即黄铁矿和黄铁矿)的氧化机理的敏感性。我们发现,随着暴露于氧化时间和氧化程度的增加,SIP参数,例如相移,电导率的虚构分量和总变化性降低。该观察结果表明,矿物表面的溶解消耗降低了硫化物矿物的电容性和极化率。但是,在氧化过程中确实会发生相移的小幅增加,并且会产生虚构的电导率。这些瞬时增加似乎与溶液中可溶性氧化产物(例如Fe〜(2+)和Fe〜(3+))的增加相关。次生矿物的沉淀和钝化层的形成,以氧化覆盖矿物表面,也可能有助于这些增加。相反,由于释放出可溶性氧化产物(Fe〜(2+)和Fe〜(3+)),与电解,电子和界面电导相关的电导率的实际成分对孔隙流体化学变化敏感。 ,特别是对于黄铁矿矿物的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号