首页> 外文期刊>Journal of Contaminant Hydrology >Estimation and upscaling of dual-permeability model parameters for the transport of £ coli D21g in soils with preferential flow
【24h】

Estimation and upscaling of dual-permeability model parameters for the transport of £ coli D21g in soils with preferential flow

机译:大肠杆菌D21g在优先流动性土壤中的迁移的双渗透率模型参数的估计和放大

获取原文
获取原文并翻译 | 示例
       

摘要

Dual-permeability models are increasingly used to quantify the transport of solutes and microorganisms in soils with preferential flow. An ability to accurately determine the model parameters and their variation with preferential pathway characteristics is crucial for predicting the transport of microorganisms in the field. The dual-permeability model with optimized parameters was able to accurately describe the transport of E. coli D21g in columns with artificial macropores of different configurations and lengths at two ionic strength levels (1 and 20 mM NaCl). Correlations between the model parameters and the structural geometry of the preferential flow path were subsequently investigated. Decreasing the macropore length produced a decrease in the apparent saturated hydraulic conductivity of the macropore domain and an increase in the mass transfer between the macropore and matrix domains. The mass transfer coefficient was also found to be dependent on the configuration of the preferential flow pathway. A linear superposition approach was used to estimate field-scale preferential transport behavior for hypothetical fields with different amounts and configurations of macropores. Upscaling procedures were numerically investigated to predict this field-scale transport behavior from column-scale parameters. The upscaling method provided a satisfactory prediction of the field results under the tested scenarios. This information will be useful in assessing the risks of microbial transport due to preferential flow.
机译:双渗透模型越来越多地用于定量分析优先流动的土壤中溶质和微生物的迁移。准确确定模型参数及其具有优先途径特征的变异的能力对于预测田间微生物的运输至关重要。具有优化参数的双渗透率模型能够准确描述大肠杆菌D21g在具有两个离子强度水平(1和20 mM NaCl)的不同构型和长度的人工大孔的色谱柱中的转运。随后研究了模型参数与优先流动路径的结构几何之间的相关性。减小大孔长度会导致大孔域的表观饱和水力传导率降低,以及大孔与基质域之间的传质增加。还发现传质系数取决于优先流动路径的构型。线性叠加方法用于估计具有不同数量和构型的大孔的假想场的场尺度优先输运行为。对升级程序进行了数值研究,以根据柱级参数预测该现场级传输行为。升级方法对测试情况下的现场结果提供了令人满意的预测。该信息将有助于评估优先流动导致的微生物运输风险。

著录项

  • 来源
    《Journal of Contaminant Hydrology》 |2014年第4期|57-66|共10页
  • 作者单位

    Department of Environmental Sciences, University of California, Riverside, CA 92521, United States;

    USDA, ARS, Salinity Laboratory, Riverside, CA, United States;

    Department of Environmental Sciences, University of California, Riverside, CA 92521, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Microorganism; Transport; Preferential flow; Dual-permeability model;

    机译:微生物;运输;优先流;双重渗透率模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号