...
首页> 外文期刊>Journal of Computing in Civil Engineering >Modeling of Nonlinear Guided Waves and Applications to Structural Health Monitoring
【24h】

Modeling of Nonlinear Guided Waves and Applications to Structural Health Monitoring

机译:非线性导波建模及其在结构健康监测中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Propagation of nonlinear waves in solid waveguides is a branch of wave mechanics that has received ever-increasing interest in the last few decades. Nonlinear guided waves are promising candidates for interrogating long waveguide-like structures as they conveniently combine high sensitivity to peculiar structural conditions (defects, quasi-static loads, instability conditions), typical of nonlinear parameters, with large inspection ranges, characteristic of wave propagation in confined media. However, the mathematical framework governing the nonlinear guided wave phenomena becomes extremely difficult when characterized to waveguides that are complex in either material (damping, anisotropy, heterogeneous, and the like) or geometry (multilayers, geometric periodicity, and the like). Therefore, the successful use of nonlinear guided waves as a structural diagnostic tool is not always a trivial task. In particular, the efficiency of nonlinear structural health monitoring (SHM) techniques based on higher-harmonics generation (harmonics generated by a monochromatic input in nonlinear waveguides) strongly relies on the correct identification of favorable combinations of primary and resonant double-harmonic nonlinear wave modes for which the nonlinear response is cumulative. The present work develops predictions of nonlinear second-harmonic generation and identifies these combinations of wave modes in complex waveguides by extending the classical semianalytical finite-element formulation to the nonlinear regime, and implementing it into a highly flexible, yet very powerful, commercial finite-element code. The proposed algorithm is benchmarked for four case studies, including a railroad track, a viscoelastic plate, a composite quasi-isotropic laminate, and a reinforced concrete slab. In all these cases, this tool successfully identified appropriate combinations of resonant guided modes (satisfying synchronism and large cross-energy transfer). These results open up new possibilities for the analysis of dispersion and resonance conditions for a variety of complex structural waveguides that do not lend themselves to alternative analyses, such as purely analytical solutions. (C) 2014 American Society of Civil Engineers.
机译:固体波导中非线性波的传播是波浪力学的一个分支,在过去的几十年中,波浪力学受到了越来越多的关注。非线性导波是询问长波导状结构的有希望的候选者,因为它们方便地将高灵敏度对特殊的非线性参数,具有大检查范围的特殊结构条件(缺陷,准静态载荷,不稳定性条件)进行组合,并具有在波中传播的特性。密闭媒体。但是,当以材料(阻尼,各向异性,非均质等)或几何形状(多层,几何周期性等)复杂的波导为特征时,控制非线性导波现象的数学框架变得极为困难。因此,成功地将非线性导波用作结构诊断工具并不总是一件容易的事。特别是,基于高次谐波生成(非线性波导中单色输入生成的谐波)的非线性结构健康监测(SHM)技术的效率强烈依赖于正确识别一次谐波和谐振双谐波非线性波模式的有利组合。非线性响应是累积的。通过将经典的半解析有限元公式扩展到非线性状态,并将其实现为高度灵活但功能强大的商业有限元,本工作对非线性二次谐波的产生进行了预测,并识别了复杂波导中的波模组合。元素代码。所提出的算法以四个案例研究为基准,包括铁轨,粘弹性板,复合准各向同性层压板和钢筋混凝土板。在所有这些情况下,该工具成功地确定了共振引导模式的适当组合(满足同步性和大的交叉能量传递)。这些结果为分析各种复杂结构波导的色散和共振条件开辟了新的可能性,这些结构波导本身不适合进行其他分析,例如纯分析解决方案。 (C)2014年美国土木工程师学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号