...
首页> 外文期刊>Journal of Computing in Civil Engineering >Optimizing Speedup Performance of Computational Hydrodynamic Simulations with UPC Programming Model
【24h】

Optimizing Speedup Performance of Computational Hydrodynamic Simulations with UPC Programming Model

机译:用UPC编程模型优化计算流体力学模拟的加速性能。

获取原文
获取原文并翻译 | 示例

摘要

In this study, we exploit the advantages of Berkeley's Unified Parallel C (UPC) programming model to optimize the speedup performance of computational hydrodynamic (CHD) simulations, which constitute an important class of modelling tool for hydraulic engineering applications. A two-dimensional (2D) numerical model, termed UPC-CHD, is developed using the conservative forms of the Navier-Stokes (NS) continuity, momentum, and energy equations for viscous, incompressible, and adiabatic flow cases with the UPC model. The following numerical schemes are adopted for discretization in UPC-CHD: (1) a 2-step Lax-Wendroff explicit scheme for the temporal term; (2) a Roe linear approximation with a 3rd-order upwind biased algorithm for the convective fluxes; and (3) a central-differencing scheme for the viscous fluxes. The obtained speedup results demonstrate that UPC-CHD with the affinity principle achieves good speedup performance when compared to the serial algorithm, with an average value of 0.8 per unit core (thread) until 100 processor cores when simulating the Couette, Blasius boundary layer, and Poiseuille flows on a 2D domain of 100 million grids. Finally, we also investigate the effects of varying domain size on the speedup performances of UPC-CHD for the same flow conditions.
机译:在这项研究中,我们利用Berkeley的Unified Parallel C(UPC)编程模型的优势来优化计算流体力学(CHD)仿真的加速性能,这构成了液压工程应用程序的一类重要建模工具。通过使用UPC模型的粘性,不可压缩和绝热流动情况的Navier-Stokes(NS)连续性,动量和能量方程的保守形式,开发了一个称为UPC-CHD的二维(2D)数值模型。在UPC-CHD中采用以下数值方案进行离散化:(1)时间项的两步Lax-Wendroff显式方案; (2)对流通量的Roe线性近似与三阶迎风偏置算法; (3)粘性通量的中心差分方案。获得的加速结果表明,与串行算法相比,具有相似性原理的UPC-CHD可以实现良好的加速性能,在模拟Couette,Blasius边界层和Poiseuille在1亿个网格的2D域上流动。最后,我们还研究了在相同流动条件下,不同域尺寸对UPC-CHD加速性能的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号