首页> 外文期刊>Journal of computational science >Automatic shape detection of ice crystals
【24h】

Automatic shape detection of ice crystals

机译:自动形状检测冰晶

获取原文
获取原文并翻译 | 示例
           

摘要

Clouds have a crucial impact on the energy balance of the Earth-Atmosphere system. They can cool the system by partly reflecting or scattering of the incoming solar radiation (albedo effect); moreover, thermal radiation as emitted from the Earth's surface can be absorbed and partly re-emitted by clouds leading to a warming of the atmosphere (greenhouse effect). The effectiveness of both effects crucially depends on the size and the shape of a cloud's particulate constituents, i.e. liquid water droplets or solid ice crystals. For studying cloud microphysics, in situ measurements on board of aircraft are commonly used. An important class of measurement techniques comprises optical array probes (OAPs) as developed since the 1970s [13]. While water droplets can be assumed as spherical, the shape and size of ice particles are highly variable. The currently used analysis methods to determine the particles' size from OAP detection do rarely consider shape details or fine structures of ice particles, which may lead to artificial biases in the results. In this paper, we present two new computational analysis methods, combined in an hybrid approach, for an automatic classification of ice particles and water droplets. The first method computes the principal components of a cloud particle and uses them to determine an ellipse, which can then be used to filter for spherical particles. The second method uses convolutional neural networks (CNNs) for the classification of columns and rosettes, respectively. Although we currently only classify these two particle types with CNNs, the presented method can be easily adapted for the classification of other particle types. The particularity of our method is that we use a virtual data set to pre-train the networks, which are then further trained with a smaller amount of manually classified real cloud particles in a fine tuning step. We evaluated our models on a small data set of real cloud particles and in a final field test on OAP image data that was not previously classified. The precision of this field test was better than 81% and ranged up to 98%, demonstrating that the new methods are suitable for providing profound shape classifications of cloud particle images obtained by OAP measurements. All methods we describe in this paper have been implemented in Python and C and are fully open source. Code and documentation are available on Github (https://github.com/lcsgrlch/oap).
机译:云对地球大气系统的能量平衡有一个至关重要的影响。它们可以通过部分反映或散射来辐射(Albedo效应)来冷却系统;此外,从地球表面发射的热辐射可以被云层被吸收并部分重新发射,导致大气的变暖(温室效应)。两种效果的有效性至关重要地取决于云的颗粒成分的尺寸和形状,即液体水滴或固体冰晶。用于研究云微物理学,通常使用飞机上的原位测量。一类重要的测量技术包括自20世纪70年代以来显影的光学阵列探针(OAPS)[13]。虽然水滴可以被认为是球形的,但冰颗粒的形状和尺寸是高度可变的。目前使用的分析方法从OAP检测确定粒子的尺寸很少考虑冰颗粒的形状细节或细结构,这可能导致结果中的人造偏差。在本文中,我们提出了两种新的计算分析方法,以混合方法组合,用于冰粒子和水滴的自动分类。第一方法计算云粒子的主要组成部分,并使用它们来确定椭圆,然后可以用于过滤球形颗粒。第二种方法使用卷积神经网络(CNNS)分别用于分类列和玫瑰花座。虽然我们目前仅用CNN分类这两个粒子类型,但是呈现的方法可以容易地适应其他粒子类型的分类。我们的方法的特殊性是我们使用虚拟数据集来预先训练网络,然后在微调步骤中以较少量的手动分类的真实云粒子进行进一步训练。我们在实际云粒子的小型数据集中进行了评估了我们的模型,并在未预先分类的OAP图像数据上的最终现场测试中。该现场测试的精度优于81%,高达98%,表明新方法适用于提供通过OAP测量获得的云粒子图像的深刻形状分类。我们在本文中描述的所有方法已经在Python和C中实现,并且是完全开源的。 github上有代码和文档(https://github.com/lcsgrlch/oap)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号