首页> 外文期刊>Journal of computational science >Multi-scale striated muscle contraction model linking sarcomere length-dependent cross-bridge kinetics to macroscopic deformation
【24h】

Multi-scale striated muscle contraction model linking sarcomere length-dependent cross-bridge kinetics to macroscopic deformation

机译:将肌节长度依赖的跨桥动力学与宏观变形联系起来的多尺度横纹肌收缩模型

获取原文
获取原文并翻译 | 示例
           

摘要

The investigation of healthy and diseased muscle behavior via in silico analysis requires the modeling of biophysical processes on multiple spatial and temporal scales. Owing to the complexity of the phenomena in question, simultaneous simulations of all the processes across different scales are extremely computationally expensive. Therefore, many multi-scale models utilize simplified phenomenological models at the micro level. However, such models may not be able to predict transient contractile behavior accurately when the deformation is unsteady or non-uniform. To overcome these deficiencies of phenomenological models, we propose a novel multi-scale muscle model in which continuum muscle mechanics are modeled utilizing the finite element method, and the material characteristics of muscle tissues at the microscopic scale are defined by Huxley's model of muscle contraction. Owing to the specific application of the sliding-filament theory coupled with the kinetic formulation of Gordon's length-tension relationship, the proposed model can provide more precise simulations of muscle behavior under both isotonic and transient conditions. The proposed model is verified using both benchmark data and real world examples, and the results are compared to corresponding predictions obtained using the FE-Hill model. Specific implementations of biophysical components at the muscle fiber scale are validated by comparing them to predictions obtained using a spatially explicit molecular model implemented on the MUSICO platform. To enable the execution of two-scale simulations in a reasonable tinneframe, we utilize a custom-tailored parallelization platform called Mexie. The ability of the proposed model to describe tissue-scale motor system behavior and the efficiency of its parallel execution are demonstrated through simulations of tongue movement during the propulsive phase of human swallowing. In these simulations the tissue's complex muscular structure is represented by a 2D finite element mesh. The proposed model provides tools for the scientific investigation of musculoskeletal disorders and facilitates the prospective development of clinical applications for characterizing neuromuscular disorders and monitoring disease progression during therapy. (C) 2019 Published by Elsevier B.V.
机译:通过计算机模拟分析研究健康和患病的肌肉行为,需要在多个时空尺度上对生物物理过程进行建模。由于所讨论现象的复杂性,跨不同尺度的所有过程的同时仿真在计算上非常昂贵。因此,许多多尺度模型在微观水平上都使用简化的现象学模型。但是,当变形不稳定或不均匀时,此类模型可能无法准确预测瞬态收缩行为。为了克服现象学模型的这些缺陷,我们提出了一种新颖的多尺度肌肉模型,其中使用有限元方法对连续肌肉力学进行建模,并通过赫x黎的肌肉收缩模型定义了微观尺度上的肌肉组织的材料特征。由于滑丝理论的特殊应用以及戈登长度-张力关系的动力学公式,所提出的模型可以在等渗和瞬态条件下提供更精确的肌肉行为模拟。使用基准数据和实际示例对提出的模型进行了验证,并将结果与​​使用FE-Hill模型获得的相应预测进行了比较。通过将其与使用MUSICO平台上实现的空间明确分子模型获得的预测进行比较,可以验证肌肉纤维尺度上生物物理组件的特定实现方式。为了能够在合理的框架内执行两尺度模拟,我们利用了定制的并行化平台Mexie。该模型描述组织规模运动系统行为的能力及其并行执行的效率通过人类吞咽推进阶段的舌头运动仿真得到了证明。在这些模拟中,组织的复杂肌肉结构由2D有限元网格表示。所提出的模型为肌肉骨骼疾病的科学调查提供了工具,并促进了表征神经肌肉疾病和监测治疗过程中疾病进展的临床应用的前瞻性发展。 (C)2019由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号